• Title/Summary/Keyword: pressure tube

Search Result 2,133, Processing Time 0.176 seconds

Study upon Design Stress due to Pressure of Shell-and-Tube Type Heat Exchanger (원통다관식 열교환기의 압력 변화에 따른 설계 응력 연구)

  • Lee, Y.B.;Han, S.G.;Ko, J.M.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.5 no.2
    • /
    • pp.8-13
    • /
    • 2008
  • Shell-and-tube type heat exchangers are generally classified with fixed tube-sheet and floating tube-sheet heat exchangers. In this paper, we employed the fixed tube-sheet heat exchangers. We theoretically investigated the safety evaluation of our shell-tube heat exchanger by axial, bending and equivalent stress of fin tubes, tube plates, channels and shell. Design pressure ranges were chosen pressure($0.6{\sim}2\;MPa$) on tube side and 200 %(3 MPa) of Maximum pressure on shell side for safety evaluation of heat exchangers. This research will be useful for fabrication of heat exchangers to prevent against damage hazard of heat exchangers in operation.

  • PDF

Influence of Velocity on Pressure Drop of Flowing Ice Slurry in Elbow and its continued Inclined Tube (곡관과 연속된 경사관 내에서 유동하는 아이스슬러리의 압력손실에 미치는 유속의 영향)

  • Park Ki-Won;Kim Kyu-Mok
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.7
    • /
    • pp.635-641
    • /
    • 2005
  • This study experimented to understand the effects of transporting ice slurry through elbow and inclined tube. And at this experiment it used propylene glycol-water solution and a diameter of about 2mm ice particle. The experiments were carried out under various conditions, with velocity of water solution at the entry ranging from 1.0 to 3.5 w/s and elbows and inclined tubes of 4 kinds angle with $30^{\circ},\;45^{\circ},\;90^{\circ}\;and\;180^{\circ}$. The pressure drop between the tube entry and exit were measured. According to angle of bending, the highest pressure drop was measured at $30^{\circ}$ elbow and the lowest pressure drop was measured at $90^{\circ}$ elbow, and there are only a little differences of pressure drop between $45^{\circ}$ elbow and $180^{\circ}$ elbow. According to angle of inclined tube, the highest pressure drop was measured at $90^{\circ}$ inclined tube and the pressure drop at $45^{\circ},\;30^{\circ},\;180^{\circ}$ inclined tubes were lower successively. The lowest pressure drop in elbows and inclined tubes was measured at velocity of $2.0\~2.5$ m/s and concentration of $10\;wt\%$.

Efficient Design of Gun-Tube Considering Inner Pressure of Bore (포강 내 압력을 고려한 효율적 포신 설계)

  • Eubin Kim;Gyubin Kim;Eun Gyo Park;Seok-Hwan Oh;Tae-Seong Roh;Jin Yeon Cho
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.26 no.5
    • /
    • pp.371-383
    • /
    • 2023
  • Artillery gun tube experiences very high pressure according to the blast of propellant charge. Therfore, it is essential to guarantee the structural safety of the gun tube. On the other hand, weight reduction of gun tube is also a crucial design factor since the agility of artillery vehicle directly leads to its survivability. In this line of thought, this work proposed an efficient design procedure which utilizes the convex combination of breech pressure and projectile base pressure time histories. Its efficiency is verified by comparing with other procedures. Other procedures utilize different computed max pressure rather than the convex combination design pressure. Additionally, a transient analysis is carried out considering the projectile movement and the corresponding pressure distribution through the newly developed ABAQUS user-subroutine. The analysis confirms the structural safety of the lightweight gun tube designed by the proposed method.

Experimental Study on Pressures Changes on Infilling Soil and Geotextile Drain in Circular Acrylic Tube Structure (토사 주입과 배수 시 원형 아크릴 튜브 구조체의 압력 변화에 대한 실험적 연구)

  • Kim, Hyeong-Joo;Won, Myoung-Soo;Lee, Jang-Baek;Park, Tae-Woong
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.6 no.3
    • /
    • pp.86-94
    • /
    • 2015
  • A series of injection and drainage test were conducted on an circular acrylic tube to investigate the pressure generated by the accumulated fill materials inside a circular acrylic tube structure. The acrylic tube was filled by means of gravity filling with a slurry material having an average water content of 700%. The water head during the filling process was 1.8m and the bottom pressure during initial filling was 20.18kPa. The recorded stress at the sides of the acrylic tube was 17.89kPa during the filling process and was reduced to 13.58kPa during the leaving process. Continuous drainage of the acrylic tube has greatly influenced the stresses around the tube structure. As the water is gradually allowed to overflow, the generated pressure at the topmost pressure sensor of the tube was reduced further to 2.17kPa. Eventually, the initially liquid state slurry material transforms into plastic state after water has dissipated and substantial soil particles are deposited in the acrylic tube. The final water content of the deposited silt inside the acrylic tube after the test was 42%. It was found that the state of stresses(geo-static earth pressures) in the acrylic tube was anisotropic rather than isotropic.

The Integrity Verification of Tube-end Sleeve by ECT (와전류탐상검사에 의한 튜브엔드 슬리브 건전성 검증)

  • Kim, Su Jin;Kwon, Kyung Joo;Suk, Dong Hwa;Park, Ki Tae
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.11 no.1
    • /
    • pp.20-24
    • /
    • 2015
  • Steam generator(S/G) tubes in pressurized water reactor (PWR's) are subject to several types of degradation. This degradation includes denting, pitting, intergranular attack(IGA), intergranular stress corrosion cracking(IGSCC), fatigue, fretting and wear. Degradation can be derived from either the primary side(inside) or the secondary side(outside) of the tube. Recent issue for tube degradation in domestic steam generator is the tube end cracking on seal weld region. The seal weld region at the tube end and tube itself is regarded as a pressure boundary between the primary side and the secondary side. One of the Westinghouse Model-F S/G has experienced tube end cracking and its number of plugging approximately becomes to the operating limit up to 5% due to tube end cracking which was reported as SAI/MAI(single/multiple axial indication) or SCI/MCI(Single/multiple circumferential indication) from the results of eddy current testing. Eddy current mock-up test was carried out to determine the origin of cracking whether it is from weld zone area or parent tube. This result was helpful to analyze crack location on ECT data. Correct action on this problem was the installation of tube-end sleeve. Last year, after removing 340 installed plugs from tubes, selected 269 tubes took tube-end sleeve installation. Tube-end sleeve brought pressure boundary from parent tube to installed sleeve tube. Tube-end sleeve has the benefit of reducing outage period and increasing more revenue than replacing S/G. This paper is provided to assist interest parties in effectively understanding this issue.

Creep Analysis on Pressure Tube Wall Thickness Variation

  • Kim, Jung-Gyu;Hwang, Jong-Keun;Park, Keon-Woo;Kim, Tae-Hyung;Rhee, Hui-Nam
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.05d
    • /
    • pp.295-299
    • /
    • 1996
  • This analysis is to investigate the benefits and disadvantages of increasing the pressure tube wall thickness for CANDU reactor. Creep analysis of the pressure tube was performed for slightly enriched uranium (SEU) to establish the reduction in axial elogation and diametral creep provided by a thicker wall pressure tube.

  • PDF

Evaporation heat transfer and Pressure loss in micro-fin tubes and a smooth tube (마이크로핀관과 평활관에서의 증발열전달과 압력손실 특성)

  • 장세환;정시영;홍영기
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.11 no.2
    • /
    • pp.215-223
    • /
    • 1999
  • Evaporation heat transfer coefficient and pressure loss were measured for three different micro-fin tubes and a smooth tube. The experiments were carried out with R-22 over a wide range of vapor Quality, mass velocity and heat flux. Heat transfer coefficient of the tube with slightly modified fin shape was found to be higher than that of the commercial reference tube by 60%. The improvement of heat transfer has been achieved without noticeable increase of pressure loss. Heat transfer coefficient was increased with increasing quality, refrigerant mass flux, and heat flux. However, the effect of refrigerant mass flux and heat flux was not great. Heat transfer coefficient at bottom was lower than that at top of the tube in low quality region, which suggested the existence of stratification in the micro-fin tube. Pressure drop was linearly increased with increasing refrigerant quality and was proportional to about square of mass flux.

  • PDF

Characteristics on Evaporating Pressure Drop of HCs Refrigerants inside a horizontal tube (수평관내 HC계 냉매의 증발 압력강하 특성)

  • Choi, Jun-Hyuk;Lee, Ho-Saeng;Kim, Jae-Dol;Yoon, Jung-In
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.63-64
    • /
    • 2006
  • Chracteristics on evaporating pressure drop of HCs refrigerants inside a horizontal tube were studied experimentally. Experimental results were presented for pressure drops of hydrocarbon refrigerants R-290, R-600a, R-1270 and HCFC refrigerant R-22 inside a horizontal double pipe heat exchanger. Three tubes with a tube diameter of 12.70mm, 9.52mm and 6.35mm were used for this study. Hydrocarbon refrigerants showed higher evaporating pressure drop than that of R-22 in all tubes. The highest pressure drop was founded in R-600a. The highest evaporating perssure drop of all refrigerants was shown in a tube diameter of 6.35mm with same mass flux. The results can be used as the basic data for the design of heat exchanger using hydrocarbon refrigerants as an alternatives.

  • PDF

Flow and Pressure Drop Characteristics of R22 in Adiabatic Capillary Tubes

  • Kim, Min-Soo;Kim, Sung-Goo;Ro, Sung-Tack
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.9
    • /
    • pp.1328-1338
    • /
    • 2001
  • The objective of this study is to present flow and pressure drop characteristics of R22 in adiabatic capillary tubes of inner diameters of 1.2 to 2.0mm, and tube lengths of 500 to 2000mm. Distributions of temperature and pressure along capillary tubes and the refrigerant flow rates through the tubes were measured for several condensing temperatures and various degrees of subcooling at the capillary tube inlet. Condensing temperatures of R22 were selected as 40, 45, and 50$^{\circ}C$ at the capillary tube inlet, and the degree of subcooling was adjusted to 1 to 18$^{\circ}C$. Experimental results including mass flow rates and pressure drops of R22 in capillary tubes were provided. A new correlation based on Buckingham II theorem to predict the mass flow rate through the capillary tube was presented considering major parameters which affect the flow and pressure drop characteristcis.

  • PDF

Characteristics of Electrical Type Pressure Transducer Which uses Bourdon Tube (Bourdon관을 이용한 전기식 압력변환기의 특성)

  • 김기중;백재규;한응교
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.7 no.1
    • /
    • pp.14-22
    • /
    • 1983
  • The Bourdon tube pressure gauge is the most widely used primary detector for pressure in various kinds of fields recently. However in many cases lots of difficulties are encountered in telemetering, measuring the continuously changing pressure and recording as time goes by, etc. In this paper a Bourdon tube of flat-oval section is considered. On the basis of Wolf's theory, the very sensitive places are selected on the tube and full bridge arrangement is used. Then all of the characteristics are examined in order to use the pressure transducer practically into which the pressure gauge is converted. From the results, the error in meter reading is about $\pm$3% F.S., on the other hand, when measured with strain gauge, the error is within $\pm$1% F.S.. Also external acceleration on Bourdon tube hardly affect practical use.

  • PDF