• Title/Summary/Keyword: pressure ratio

Search Result 5,715, Processing Time 0.035 seconds

A Study on the Measuring about the Coefficient of Earth Pressure at Rest 1 (정지토압계수 측정에 관한 연구 1)

  • 송무효
    • Journal of Ocean Engineering and Technology
    • /
    • v.15 no.4
    • /
    • pp.92-100
    • /
    • 2001
  • It is very important to determine the coefficient of earth pressure at rest accurately in order to estimate the behavior of soil structure. For estimation of K/sub 0/-value depending upon the stress history of dry sand, a new type of K/sub 0/-oedeometer apparatus is devised, and the horizontal earth pressure is accurately measured. For this study, 2 types of one-cyclic K/sub 0/-Loading/unloading models have been studied experimentally using four relative densities of the sand. The results obtained in this test are as follows : K/sub on'/ the coefficient of earth pressure at - rest for virgin loading is a function of the angle of internal friction Φ' of the sand and is determined as K/sub on/=1 - 0.914 sin Φ', K/sub ou'/ the coefficient of earth pressure at rest for virgin unloading is a function of K/sub on/ and over consolidation ratio(OCR), and is determined as K/sub ou/=K/sub on/(OCR)K/sup a/. The exponent α, increases as the relative density increases. K/sub or'/ the coefficient of earth pressure at rest for virgin reloading decreases in hyperbola type as the vertical stress, σ/sub v/’, increases. And, the stress path at virgin reloading leads to the maximum prestress point, independent upon the value of the minimum unloading stress. The gradient of this curve, m/sub r/ increases as OCR increases.

  • PDF

Characteristics of Supersonic Jet Impingement on a Flat Plate (평판에 충돌하는 초음속 제트에 유동특성)

  • Hong Seung-kyu;Lee Kwang-Seop;Park Seung-O
    • Journal of computational fluids engineering
    • /
    • v.6 no.3
    • /
    • pp.32-40
    • /
    • 2001
  • Viscous solutions of supersonic jet impinging on a flat plate normal to the flow are simulated using three-dimensional Navier-Stokes solver. The jet impinging flow structure exhibits such complex nature as shock shell, plate shock and Mach disk depending on the flow parameters. Among others, the dominant parameters are the ratio of the nozzle exit pressure to the ambient pressure and the distance between the nozzle exit plane and the impinging plane. In the present study, the nozzle contour and the pressure ratio are held fixed, while the jet impinging distance is varied to illuminate the characteristics of the jet plume with the distance. As the plate is placed close to the nozzle at 3D high, the computed wall pressure at or near the jet center oscillates with large amplitude with respect to the mean value. Here D is the nozzle exit diameter. The amplitude of wall pressure fluctuations subsides as the distance increases, but the maximum mean pressure level at the plate is achieved when the distance is about 4D high. The frequency of the wall pressure is estimated at 6.0 kHz, 9.3 kHz, and 10.0 kHz as the impinging distance varies from 3D, 4D, to 6D, respectively.

  • PDF

Damage Behavior of Elbow Pipe with Inner or Outer Local Wall Thinning under Internal Pressure (내압을 받는 내/외부 국부 감육 곡관의 파손거동)

  • Kim, Soo-Young;Nam, Ki-Woo
    • Journal of Power System Engineering
    • /
    • v.18 no.5
    • /
    • pp.66-73
    • /
    • 2014
  • This study was considered to occur the local wall thinning at elbow which is flowing the steam and high-pressure water of high-temperature. The angle of elbow is ${\Theta}=45^{\circ}$ and $67.545^{\circ}$. The damage behaviors of inner or outer wall thinning elbow under internal pressure were calculated by FEA(finite element analysis). We compared the simulated results by FEA with experimental data. The FEA results are as follows: In the FEA results of three types of wall thinning ratio, the circumferential and longitudinal stresses show the similar values regardless of the angle of elbow, respectively. The circumferential strain was greater at elbow of small angle, but the longitudinal strain was nearly same. The FEM stress of outer wall thinning elbow was slightly higher than that of the inner wall thinning elbow, and strain was also slightly higher. In the experiments, the circumferential strain was increased with the increase in the internal pressure, and increased rapidly on about 0.2% of strain. The longitudinal strain was small. The strain at break was much smaller than 0.2%. In the relation between pressure and eroded ratio, the criteria that can be used safely under operating pressure and design pressure were obtained. The results of FEA were in relatively good agreement with those of the experiment.

Combustion Pressure Calculation of Kick Motor using Stain on Cylinder Section of Composite Case (복합재 케이스의 실린더 변형률을 이용한 킥모터 연소 압력 계산)

  • Yi, Moo-Keun;Kil, Kyoung-Sub;Lee, Kyoung-Won
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.777-780
    • /
    • 2010
  • A method for the calculation of the combustion pressure of Kick-Motor was proposed, which is based on the circumferential direction strain on the cylinder of Kick-Motor. At first, polynomials which approximate the ratio of strain and Combustion Pressure during Combustion Time was calculated from ground firing tests. Then strain data during flight time was plugged into the polynomials to get Combustion Pressure of the Kick-Motor. Compared with the measured pressure data during flight the converted showed similar trend. Pressure difference between them was about 10psi.

  • PDF

Design Optimization and Numerical Study of O-ring using Taguchi Method (다구찌법을 이용한 O-링의 최적설계 및 수치적 연구)

  • 김청균;조승현
    • Tribology and Lubricants
    • /
    • v.20 no.5
    • /
    • pp.259-265
    • /
    • 2004
  • The sealing performance of O-rings is affected by working conditions such as applied pressure, operation temperature, pre-compressed ratio and material properties. In this paper, a pressurized and compressed elastomeric bi-polymer O-ring in which is inserted into a rectangular groove is analyzed by non-linear MARC finite element program based on the Taguchi experimental method. O-rings with 9 different profile models are analyzed for design parameters that are related to the diameter ratio between outer diameter and inner one of bi-polymer O-ring, compressive ratio, groove angle and groove depth. The calculated FEM results showed that the affection ratio of design parameter dlD, which may control sealing pressure of O-rings, is the most influential parameter among the groove angle, groove depth and compression ratio.

Experimental Study on the Film Cooling Effectiveness on a Flat Plate with Anti-Vortex Holes

  • Park, Soon Sang;Park, Jung Shin;Kwak, Jae Su
    • International Journal of Aerospace System Engineering
    • /
    • v.1 no.1
    • /
    • pp.1-9
    • /
    • 2014
  • In this paper, the effects of the anti-vortex hole angle and blowing ratio on the flat plate film cooling effectiveness were experimentally investigated. For the film cooling effectiveness measurement, pressure sensitive paint technique was applied. The experiments were conducted for cylindrical and anti-vortex film cooling holes, and three blowing ratios of 0.25, 0.5, and 1.0 were tested. Two anti-vortex hole angles of 0 and 15 degree with respect to the flow direction were considered. For the cylindrical hole case, the film cooling effectiveness decreased as the blowing ratio increased because of the coolant lift-off. For the angle anti-vortex hole cases, however, higher blowing ratio resulted in higher film cooling effectiveness due to the reduced actual blowing ratio and diminished kidney vortex. For all blowing ratio, the angled anti-vortex hole case showed the highest film cooling effectiveness.

A Study on the Performance Characteristics According to the Compression Ratio of Spark Ignition Engine Fuelled with Coal Oil (Coal Oil을 사용한 스파크 점화기관의 압축비 변화에 따른 엔진 성능에 관한 연구)

  • HAN, SUNG BIN;CHUNG, YON JONG
    • Journal of Hydrogen and New Energy
    • /
    • v.28 no.2
    • /
    • pp.225-230
    • /
    • 2017
  • Coal oil is widely used as a home heating fuel for portable and installed coal oil heaters. Today, Coal oil is widely used as fuel for jet engines and some rocket engines in several grades. This paper describes the performance characteristics according to the compression ratio of spark ignition engine fuelled with coal oil. As a result, the following knowledge is obtained: As the compression ratio is decreased, there is an increase in torque, indicated mean effective pressure (IMEP), heat release rate, and brake thermal efficiency. Higher compression ratio of the engine decreases the ignition delay period, combustion period, and cooling loss.

Effect of Compression Ratio on the Combustion Characteristics of a Thermodynamics-Based Homogeneous Charge Compression Ignition Engine

  • Han, Sung Bin
    • Journal of Energy Engineering
    • /
    • v.24 no.3
    • /
    • pp.61-66
    • /
    • 2015
  • Homogeneous charge compression ignition (HCCI) engine combines the combustion characteristics of a compression ignition engine and a spark ignition engine. HCCI engines take advantage of the high compression ratio and heat release rate and thus exhibit high efficiency found in compression ignition engines. In modern research, simulation has be come a powerful tool as it saves time and also economical when compared to experimental study. Engine simulation has been developed to predict the performance of a homogeneous charge compression ignition engine. The effects of compression ratio, cylinder pressure, rate of pressure rise, flame temperature, rate of heat release, and mass fraction burned were simulated. The simulation and analysis show several meaningful results. The objective of the present study is to develop a combustion characteristics model for a homogeneous charge compression ignition engine running with isooctane as a fuel and effect of compression ratio.

Flow characteristics of high pressurized jet with aspect ratio (형상비에 따른 고압 분사 노즐의 유동 특성 연구)

  • Roh, Byung-Joon;Jeung, Woo-Tae;Lee, Sang-Jin;Kim, Sung-Min
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.717-722
    • /
    • 2003
  • The aspect ratio is the main parameter which governs the outer flow pattern and nozzle performance. And in this study, some flow characteristics with the variation of nozzle aspect ratios such as mean pressure distributions along the center line of the outer flow, flow coefficients and the diffusion angles have been experimentally investigated. Through the experimental analysis, the higher aspect ratio was known to decrease the jet kinetic energy because of the friction losses at the outer of nozzle. As the result, it is found that the nozzle performance depends mainly on the aspect ratio of nozzle.

  • PDF

The Effect of a Vortex Chamber Diameter Ratio on Energy Separation (보텍스 생성실 지름비가 에너지 분리에 미치는 영향)

  • 유갑종;이병화;최인수
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.8
    • /
    • pp.667-673
    • /
    • 2001
  • As an alternative cooling method to reduce environmental hazard, vortex tubes have been studied for energy separation into cold and hot streams. Hence, the experiments were carried out systematically to find the best ratio of vortex chamber diameter to tube diameter. Also, the work was don to investigate how inlet pressure and geometric ratios of vortex tube affected temperature differences at tow needs as ell as cooling capacity and cooling efficiency. The result showed that the maximum temperature differences at the both ends and the maximum cooling efficiency were obtained when the ratio of vortex chamber diameter was about 1.45, while the inlet pressure ws not higher than 0.7 MPa.

  • PDF