• Title/Summary/Keyword: pressure field

Search Result 3,765, Processing Time 0.034 seconds

Field measurement of local ice pressures on the ARAON in the Beaufort Sea

  • Lee, Tak-Kee;Lee, Jong-Hyun;Kim, Heungsub;Rim, Chae Whan
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.6 no.4
    • /
    • pp.788-799
    • /
    • 2014
  • This study conducted four field measurements of local ice pressure during the icebreaking voyage of the icebreaking research vessel "ARAON" in the Chukchi and Beaufort seas from July to August of 2010. For measurements, 14 strain gauges, including 8 strain gauge rosettes, were set on the bow of the port side. Influence coefficients were determined using a finite element model of the instrumented area and they were used to convert the measured strains on the hull structure to local ice pressures. The converted maximum pressure was calculated as 2.12 MPa on an area of $0.28m^2$. Pressure-area curves were developed from the surveyed pressure data and the results were compared with previously measured data. The study results are expected to provide an understanding of local ice pressures and thus be useful in the structural design of ice class ships.

Design and Characteristic of the AC Solenoid Valve (AC 솔레노이드 밸브의 설계 및 특성)

  • Kim, Dong-Soo;Jeon, Yong-Sik
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.3056-3061
    • /
    • 2007
  • The technology of AC solenoid valves is now considered as a core technology in the fields of the production line of semi-conductor chips and the micro fluid chips for medical applications. And AC solenoid valves, which operate by compressed air, are characterized by high speed response, great repeatability and that the pressure on the cross sectional area of poppet is kept constant regardless of the fluctuation of the pressure exerted on the ports. In this study, AC solenoid valves that posses the high-speed responsibility and the high rate of flow have designed and analyzed through the law of equivalent magnetic circuit and Finite Element Method (FEM) respectively. In case of poppet, Flow field characteristic was analyzed by the variation of poppet and it was able to display flow field by changing the location of the poppet. Also, we verified possibility of the design through the static and dynamic pressure and the 3D distribution curve of the force by working the front poppet.

  • PDF

An Investigation into Micro Valve Field and Flow Field Characteristic of 7mm Width (7mm폭의 Micro Valve 자장 및 유동특성 고찰)

  • Jeon, Y.S.;Kim, D.S.;Shin, D.Y.
    • Proceedings of the KIEE Conference
    • /
    • 2006.07b
    • /
    • pp.657-658
    • /
    • 2006
  • Recently, the micro on-off valves have been focused on core technology in the fields of the production line of semi-conductor chips and the micro fluid chips for bio-medical applications. A key characteristics for micro valve, operated by compressed air, are high speed response and great repeatability. Indeed, it is also important to keep the pressure on the cross-sectional area of the poppet to be constant regardless of the fluctuation of the pressure exerted on the ports. In this study, we have designed and analysed the high-speed and high flow rate micro on-off valve using the analogy of equivalent magnetic circuit and Finite Element Method(FEM) respectively. In case of poppet, flow field characteristic was analyzed by the variation of poppet and it was able to display flow field by changing the location of the poppet. Also, we verified possibility of the design through the static and dynamic pressure and the 3D distribution curve of the force by working the front poppet.

  • PDF

Characteristic Experiment of a Hydraulic Control Valve by Using Electro-Rheological Fluid (ERF를 이용한 유압제어밸브의 특성실험)

  • Kim, Dong-Su;Park, Jae-Beom;Jang, Seong-Cheol
    • 연구논문집
    • /
    • s.30
    • /
    • pp.93-99
    • /
    • 2000
  • Electro-Rheological(ER) fluids change their apparent viscosity according to the electric field strength. The electrical and rheological properties of zeolite based the ER fluids were reported. The electric field dependent yield stress are obtained from experimental investigation on the Bingham property of the ER fluid. Using ER fluids, it is possible to directly interface between electric drop and flow rate of the ER fluid was hydraulic control valve measured under application of an electric field. The purpose of the present study is pressure drop measurement of an ER valve by using strain gage. The performance characteristics of the valve system are evalusted in terms of pressrue fixed with respect to the intensity of employed electric fields and flow rates. As a result, it is esperimentally confirmed that pressure control valve using ER fluids applicable to use in hydraulic power systems.

  • PDF

A Numerical Study on the Flow Field in an Optical Disc Drive (광디스크 드라이브 내부 유동장 해석)

  • 최명렬;성평용;이경호
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.991-997
    • /
    • 2003
  • A flow field around a disc in an optical disc drive is invested using numerical methods. The high-speed rotating disc induces a strong flow field around the disc, which causes the pressure distribution on the surfaces of the disc. The pressure difference between the upper and the lower surfaces causes the deformation of the disc. In the first part of this study, flow fields around a rotating disc and a stationary wall are investigated using a similarity solution method, in order to identify the effect of the distance between the disc and the wall on the pressure distribution on the surfaces of the disc. In the second part, flow field in a slim-type optical disc drive is studied using a commercial code in order to consider the effect of the vortices generated by the local geometry of the drive.

  • PDF

Microwave Electric Field and Magnetic Field Simulations of an ECR Plasma Source for Hyperthermal Neutral Beam Generation

  • Lee, Hui-Jae;Kim, Seong-Bong;Yu, Seok-Jae;Jo, Mu-Hyeon;NamGung, Won
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.501-501
    • /
    • 2012
  • A 2.45 GHz electron cyclotron resonance (ECR) plasma source with a belt magnet assembly configuration (BMC) was developed for hyperthermal neutral beam (HNB) generation. A plasma source for high flux HNB generation should be satisfied with the requirements: low pressure operation, high density, and thin plasma. The ECR plasma source with BMC achieved high density at low operation pressure due to electron confinement enhancement caused by high mirror ratio and drifts in toroidal direction. The 2.45 GHz microwave launcher had a circularly bended WR340 waveguide with slits. The microwave E-field profile induced by the microwave launcher was studied in this paper. The E-field profile was a cups field perpendicular to B-filed at ECR zone. The optimized E-field profile and B-field were found for effective ECR heating.

  • PDF

Wind tunnel modeling of roof pressure and turbulence effects on the TTU test building

  • Bienkiewicz, Bogusz;Ham, Hee J.
    • Wind and Structures
    • /
    • v.6 no.2
    • /
    • pp.91-106
    • /
    • 2003
  • The paper presents the results of 1:50 geometrical scale laboratory modeling of wind-induced point pressure on the roof of the Texas Tech University (TTU) test building. The nominal (prevalent at the TTU site) wind and two bounding (low and high turbulence) flows were simulated in a boundary-layer wind tunnel at Colorado State University. The results showed significant increase in the pressure peak and standard deviation with an increase in the flow turbulence. It was concluded that the roof mid-plane pressure sensitivity to the turbulence intensity was the cause of the previously reported field-laboratory mismatch of the fluctuating pressure, for wind normal and $30^{\circ}$-off normal to the building ridge. In addition, it was concluded that the cornering wind mismatch in the roof corner/edge regions could not be solely attributed to the wind-azimuth-independent discrepancy between the turbulence intensity of the approach field and laboratory flows.

Prediction of Vehicle Exhaust Noise using 3-Dimensional CFD Analysis (3차원 유동해석을 통한 차량 배기소음 예측에 관한 연구)

  • 진봉용;이상호;조남효
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.5
    • /
    • pp.148-156
    • /
    • 2001
  • Computational Fluid Dynamics (CFD) analysis was carried out to investigate exhaust gas flow and acoustic characteristics in the exhaust system of a passenger car. Transient 3-dimensional flow field in the front and rear mufflers was simulated by CFD and far-field sound pressure was modeled by a simple monopole source method. Engine performance simulation was also performed to obtain the boundary condition of instantaneous fluid flow variation at the inlet of the exhaust system. Detailed exhaust gas flow characteristics such as velocity and pressure distribution inside the mufflers were presented and the pulsating pressure amplitude was compared at several positions in the exhaust system to deduce sound pressure level. The present method of the acoustic analysis coupled with CFD techniques would be very effective for the prediction of sound noise from vehicle exhaust systems although the effects of the inlet boundary condition and heat transfer on the accuracy of the prediction have to be validated through further studies.

  • PDF

Development of Automation System of Water-Hydraulic and Leakage Test for Pressure Vessel (압력용기 수압 및 기밀시험 자동화 시스템 개발)

  • 이원희;김동수;이승현;김광영
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1672-1675
    • /
    • 2003
  • In this study, we developed full automation test system for pressure vessel. This pressure vessel containing oxygen, nitrogen and carbon is widely used in industrial field. The test items of pressure vessel are divided into three branches which is weight measurement, water-hydraulic, and leakage test. After leakage test is completed, cleaning and dry progress is carried out. And control system is consist of three controller which is PLC, monitoring system and database system. PLC is control all of system. Monitoring system measures weight, pressure, flow etc and display to all conditions. Database system stores tested data. we design system to control all test modules in communication by a second period with three control modules. Finally, we verified this system by field test.

  • PDF

Analysis of Flow and Performance of Regulator for Clean Gas Supply System (가스 조절용 레귤레이터의 유동 및 성능해석)

  • Kim, M.K.;Lee, Y.S.;Choi, W.J.;Kwon, O.B.;Park, J.
    • Journal of Power System Engineering
    • /
    • v.13 no.1
    • /
    • pp.13-18
    • /
    • 2009
  • In this study, flow characteristics at the regulators, which is very important for clean gas supply systems for semiconductors and LCD industries, are investigated. Numerical simulations are carried out to visualize flows at regulators for several flow rates and to investigate pressure losses at some parts in the regulator. Velocity field at the regulator along with the detailed velocity field near the spring and near the valve is shown. New regulator models are proposed in this paper, and numerical simulations are also carried out to visualize flows at regulator for several flow rates, and to investigate pressure losses at the parts in new models. Pressure drops a lot across the valve seat. Pressure drop increases as mass flow rate increases. Especially for small opening, pressure drop increases rapidly as mass flow rate becomes large.

  • PDF