• Title/Summary/Keyword: pressure distribution function

Search Result 311, Processing Time 0.024 seconds

The analysis of electron energy distribution function using the approximated collision cross section in the low-pressure mercury discharge (저압 수은 방전에서의 근사화한 충돌 단면적을 사용한 전자 에너지 분포함수 해석)

  • 류명선;이진우;지철근
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 1989.10a
    • /
    • pp.19-24
    • /
    • 1989
  • The electron energy distribution function in mercury discharge positive columns are calculated numerically from the Boltzmann eqation under a set of parameters, such as the electron temperature to. the atomic temperature Tw. the electron number density no. and the electric field E. Especially, using the approximation that collision cross sections only depend on the energy, the calculated electron energy distribution function was shown that it falls off rapidly in the high energy tail.

  • PDF

Determination of Optimal Pressure Monitoring Locations of Water Distribution Systems Using Entropy Theory and Genetic Algorithm (엔트로피 이론과 유전자 알고리즘을 결합한 상수관망의 최적 압력 계측위치 결정)

  • Chang, Dong-Eil;Ha, Keum-Ryul;Jun, Hwan-Don;Kang, Ki-Hoon
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.26 no.1
    • /
    • pp.1-12
    • /
    • 2012
  • The purpose of water distribution system is supplying water to users by maintaining appropriate pressure and water quality. For efficient monitoring of the water distribution system, determination of optimal locations for pressure monitoring is essential. In this study, entropy theory was applied to determine the optimal locations for pressure monitoring. The entropy which is defined as the amount of information was calculated from the pressure change due to the variation of demand reflected the abnormal conditions at nodes, and the emitter function (fire hydrant) was used to reproduce actual pressure change pattern in EPANET. The optimal combination of monitoring points for pressure detection was determined by selecting the nodes receiving maximum information from other nodes using genetic algorithm. The Ozger's and a real network were evaluated using the proposed model. From the results, it was found that the entropy theory can provide general guideline to select the locations of pressure sensors installation for optimal design and monitoring of the water distribution systems. During decision-making phase, optimal combination of monitoring points can be selected by comparing total amount of information at each point especially when there are some constraints of installation such as limitation of available budget.

Probabilistic Fiber Strength of Composite Pressure Vessel (복합재 압력용기의 확률 섬유 강도)

  • 황태경;홍창선;김천곤
    • Composites Research
    • /
    • v.16 no.6
    • /
    • pp.1-9
    • /
    • 2003
  • In this paper, probabilistic failure analysis based on Weibull distribution function is proposed to predict the fiber strength of composite pressure vessel. And, experimental tests were performed using fiber strand specimens, unidirectional laminate specimens and composite pressure vessels to confirm the volumetric size effect on the fiber strength. As an analytical method, the Weibull weakest link model and the sequential multi-step failure model are considered and mutually compared. The volumetric size effect shows the clearly observed tendency towards fiber strength degradation with increasing stressed volume. Good agreement of fiber strength distribution was shown between test data and predicted results for unidirectional laminate and hoop ply in pressure vessel. The site effect on fiber strength depends on material and processing factors, the reduction of fiber strength due to the stressed volume shows different values according to the variation of material and processing conditions.

The Characteristics of Elutriation with Gaussian Particle Size Distributions in a gas-solid fluidized bed (기-고 유동층에서 Gaussian 분포 입자군의 표준편차에 따른 유출 특성)

  • Jang, Hyun-Tae;Cha, Wang-Seog
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.11
    • /
    • pp.3274-3279
    • /
    • 2009
  • The elutriation characteristics of particle size distribution were investigated in a gas-solid fluidized bed. Experiments were carried out with the mulit-sized particles of Gaussian distributions. The elutriation rate constant obtained from the experiment was correlated with the standard deviation of particle size and the dimensionless group of the velocity ratio. The standard deviation of pressure fluctuation, mean pressure, major frequency and power spectrum density function were calculated by pressure fluctuation properties. Size distribution of elutriated particles and pressure fluctuations were measured for the particle size distribution of particle system depended largrly on the size distribution. Characteristics of fluidization and elutriation were greatly influenced by the particle size distribution and these characteristics could be interpreted with pressure fluctuation properties.

A Study on the measurement of Electron Energy Distribution Function in Ar plasma measured by the waveforms of Langmuir probe voltages (Langmuir 프로브 전압의 파형에 따른 아르곤 플라즈마의 전자에너지 분포함수 측정에 관한 연구)

  • Kim, Du-Hwan;Park, Jeong-Hu
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.48 no.5
    • /
    • pp.391-395
    • /
    • 1999
  • In this paper, we have obtained the Electron Energy Distribution Function(EEDF) in plasma by using two differentiators and investigated the EEDFs by sawtooth and triangle waveform voltages with the working pressures and the positions of single probe. It is found that as the working pressure is decreased, the EEDFs approach to theMaxwellian distribution independent of the waveforms of probe voltage. On the otherhand, as the position of probe is moved from the center of the plasma to its edge, the EEDF of sawtooth waveform probe voltage approaches to the Maxwellian distribution, but the EEDF of triangle waveform probe voltage deviates from the Maxwellian distribution.

  • PDF

Earth Pressuroes of Tieback Walls in Sand (사질토에 시공된 앵커토류벽의 토압분포에 관한 연구)

  • 김낙경
    • Geotechnical Engineering
    • /
    • v.14 no.5
    • /
    • pp.17-28
    • /
    • 1998
  • The design of a ground anchor wall calculating the design anchor force and anchored walls depends primarily on the earth pressure acting on anchored w deflection of the wall, the wall stiffness, distribution exists for anchored walls. In the apparent earth pressure envelope design of anchored walls. In this study, full scale anchored w pressure distribution was obtained from function. Earth pressures obtained from pressure and with the apparent earth pre the anchored wall in sand. It is conclude is appropriate for the anchored wall design.

  • PDF

Effects of a Real-time Plantar Pressure Feedback during Gait Training on the Weight Distribution of the Paralyzed Side and Gait Function in Stroke Patients

  • Kim, Tae-Wu;Cha, Yong-Jun
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.17 no.2
    • /
    • pp.53-62
    • /
    • 2022
  • PURPOSE: This study was conducted to investigate the effect of a real-time pressure feedback provided during gait training on the weight weight distribution of the inner part of mid-foot in paralyzed side and gait function in stroke patients. METHODS: A total of 24 patients with hemiplegic stroke in a rehabilitation hospital were randomly assigned to the experimental and control group. All participants (n = 24) performed 15 min of comprehensive rehabilitation therapy 5 times a week for a period of 4 weeks. Additionally, the experimental group and control group underwent gait training with a real time feedback and general gait training, respectively, for 15 min five times a week for 4 weeks. Weight distribution and gait function were measured before and after the 4-week training. RESULTS: Significant increases in the weight distribution (WD), stance time (ST) and step length (SL) of the paralyzed side, and a significant decrease in the 10 m walking test (10 MWT) observed after training in the two groups (p < .05). The experimental group showed larger changes in the all variables than the control group (WD, +10.5 kg vs. +8.8 kg, p < .05; ST, 12.8 s vs. 4.9 s, p < .05; SL, 4.9 cm vs. 1.7 cm, p < .05; 10 MWT, -3.5 s vs. -1.0 s, p < .05, respectively). CONCLUSION: Gait training with a real-time feedback might be effective in improving the normalization of weight bearing of the paralyzed lower extremity and gait function of stroke patients, and be considered to be a more effective gait training for improving the abilities than the general gait training.

Characterization of ECR Plasma by Using Ion Analyzer and Its Silicon Etching (이온 분석기에 의한 ECR 플라즈마의 특성 분석 및 실리콘 식각에 관한 연구)

  • 이석현;이호준;황기웅
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.41 no.5
    • /
    • pp.492-501
    • /
    • 1992
  • In this paper, an ion analyzer is used in conjunction with a Langmuir probe to study the chracteristics of ECR plasma such as the ion temperature, ion current density and electron temperature as the operating pressure, ${\mu}$-wave power and axial position change, Silicon etching has been performed with RF-biasing and its etching chracteristics have been discussed in terms of the ion energy distribution function. The maximum value of ion current density appears in the range of 10S0-3T mbar and the broadening of ion energy distribution function increases as pressure increases. Therefore, as pressure decreases, anisotropy increases but selectivity to photoresist decreases.

Reliability Analysis for Probability of Pipe Breakage in Water Distribution System (상수관망의 파이프 파괴확률 산정을 위한 신뢰성 해석)

  • Kwon, Hyuk Jae;Lee, Cheol Eung
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.22 no.6
    • /
    • pp.609-617
    • /
    • 2008
  • Water pipes are supposed to deliver the predetermined demand safely to a certain point in water distribution system. However, pipe burst or crack can be happened due to so many reasons such as the water hammer, natural pipe ageing, external impact force, soil condition, and various environments of pipe installation. In the present study, the reliability model which can calculate the probability of pipe breakage was developed regarding unsteady effect such as water hammer. For the reliability model, reliability function was formulated by Barlow formula. AFDA method was applied to calculate the probability of pipe breakage. It was found that the statistical distribution for internal pressure among the random variables of reliability function has a good agreement with the Gumbel distribution after unsteady analysis was performed. Using the present model, the probability of pipe breakage was quantitatively calculated according to random variables such as the pipe diameter, thickness, allowable stress, and internal pressure. Furthermore, it was found that unsteady effect significantly increases the probability of pipe breakage. If this reliability model is used for the design of water distribution system, safe and economical design can be accomplished. And it also can be effectively used for the management and maintenance of water distribution system.

Analysis of Energy Distribution Function in $SiH_4$ Gas ($SiH_4$ 가스의 에너지 분포함수 관한 연구)

  • Seong, Nak-Jin;Kim, Sang-Nam
    • Proceedings of the KIEE Conference
    • /
    • 2001.07e
    • /
    • pp.76-79
    • /
    • 2001
  • Energy distribution function in $SiH_4$ has been analysed over the E/N range $0.5{\sim}300Td$ and Pressure value 0.5, 1.0, 2.5 Torr by a two-term approximation Boltzmann equation method and by a Monte Carlo simulation. The motion has been calculated to give swarm parameters for the electron drift velocity, diffusion coefficient, electron ionization, mean energy and the electron energy distribution function. The electron energy distribution function has been analysed in $SiH_4$ at E/N=30, 50Td for a case of the equilibrium region in the mean electron energy and respective set of electron collision cross sections.

  • PDF