• Title/Summary/Keyword: pressure control valve

Search Result 767, Processing Time 0.031 seconds

Flow Characteristics of Pressure Balancing Valve with Various Piston Shapes (피스톤 형상변화에 따른 압력평형밸브의 유동특성연구)

  • Kim, Tae-An;An, Byeong-Jae;Kim, Yun-Je
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.2168-2173
    • /
    • 2003
  • Pressure balancing valve is one of important control devices, which is fully automatic and no manual controls, regulating or adjustments are needed. It is typically used to maintain constant temperature of working fluid in power and chemical plants and domestic water supply systems. Pressure balancing valve is composed of body, cylinder and balancing piston. Therefore, the balancing piston shapes are important design parameters for a pressure balancing valve. In this study, numerical and experimental analyses are carried out with two different balancing piston shapes. Especially, the distribution of static pressure is investigated to calculate the flow coefficient($C_v$). The governing equations are derived from making using of three-dimensional Navier-Stokes equations with standard ${\kappa}-{\varepsilon}$ turbulence model and SIMPLE algorithm. Using commercial code, PHOEIC, the pressure and flow fields in pressure balancing valve are depicted.

  • PDF

Pressure control of hydraulic servo system using proportional control valve (비례전자밸브를 사용한 유압서보계의 압력제어)

  • Yang, Kyong-Uk;Oh, In-Ho;Lee, Ill-Yeong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.8
    • /
    • pp.1229-1240
    • /
    • 1997
  • The purpose of this study is to build up control scheme that promptly control pressure in a hydraulic cylinder having comparatively small control volume, using a PCV (proportional control valve) and a digital computer. Object pressure control system has the character to be unstable easily, because the displacement-flow gain of the PCV is too large considering the small volume of the hydraulic cylinder and the time delay of response of the PCV is comparatively long. Considering the above-mentioned characteristics of the object pressure control system, in this study, control system is designed with two degree of freedom control scheme that is composed by adding a feed-forward control path to I-PDD$^{2}$ control system, and a reference model is used on the decision of control parameters. And through some experiments on the control system with FF-I-PDD$^{2}$ controller, the validity of this control method has been confirmed.

Infinitesimal Fluid Injection Control System by using an Orifice and a Directional Control Valve (오리피스와 방향제어밸브를 이용한 미세유량 분사제어시스템)

  • Jeong, Eun-Seok;Oh, In-Ho;Lee, Ill-Yeong
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.67-68
    • /
    • 2006
  • This study suggests a precision flow control system that enables fluid injection of a few grams at a time in a few ms time duration. The fluid injection system suggested here consists of a high pressure fluid pump, a 3 way 3 position directional control valve, an injector and an orifice. The orifice is located between the directional control valve and the injector. By supplying current signal to the directional control valve, the prescribed small amount of fluid can be supplied to a plant through the injector. The control robustness of the suggested system against the disturbances like the pressure change in a plant and the viscosity variation of the injected fluid is secured easily by using an orifice with very small inside diameter and setting the supply pressure with comparatively high value. The control performances of the suggested system are verified by numerical simulations and experiments. The outcomes of this research could be applied to the common rail injection control of lubrication oil for large size marine diesel engines, and other industrial plants.

  • PDF

Prediction of Cavitation Occurrence in a Cryogenic Butterfly Valve by Flow Velocity (극저온 버터플라이 밸브의 유속에 따른 캐비테이션 발생 예측)

  • Kim, Seong-Dong;Kim, Beom-Seok;Choi, Young-Do;Lee, Young-Eo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.6
    • /
    • pp.923-930
    • /
    • 2008
  • The butterfly valve is widely used in the industrial field as an on-off or a flow control valve. When the butterfly valve is used as a flow control valve. cavitation sometimes occurs in the range of high flow rate because of the small valve opening. Therefore. the pressure loss and the cavitation characteristics are investigated by use of a commercial CFD code. The results show that the possibility of cavitation occurrence in the cryogenic butterfly valve is very high in the case of valve opening angle below 10 degree and incident velocity over 6m/s. By increasing the inlet velocity at 10 degree of valve opening angle. the value of loss coefficient increased. However. by increasing the inlet velocity at 50 degree of valve opening angle. the value of loss coefficient decreased.

A Study on the Performance Improvement of Pressure Compensating Temperature Control Valve (압력 평형식 온도조절 밸브 성능 향상을 위한 연구)

  • Kim T.-A.;Kim Youn J.
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.671-674
    • /
    • 2002
  • Pressure compensating temperature control valve(TCV) is one of the important control devices, which is used to maintain the constant temperature of working fluid in power and chemical plants. The ratio of cylinder hole diameters of inlet and outlet is the main design parameters of TCV. So this needs to be investigated to improve the function of control of temperature and void fraction. In this study, numerical analysis is carried out with various ratios of cylinder hole diameters of the inlet and outlet in the TCV. Especial1y, the distribution of the static pressure Is investigated to calculate the new coefficient($C_{\upsilon}$) and resistance coefficient(K). The governing equations are derived from making using of three-dimensional Naver-Stokes equations with standard $k-{\varepsilon}$ turbulence model and SIMPLE algorithm. Using a commercial code, PHOENICS, pressure and flow fields in TCV are calculated with different inlet and outlet diameters of the cylinder hole for cold and hot water passages.

  • PDF

A Study on Development of High Pressure Hydrogen Injection Valve (직접분사식 고압 수소분사밸브의 개발에 관한 연구)

  • Kim, Yun-Young;Ahn, Jong-Yun;Lee, Jong-Tai
    • Journal of Hydrogen and New Energy
    • /
    • v.11 no.3
    • /
    • pp.107-117
    • /
    • 2000
  • Ball poppet valve type high pressure hydrogen injection valve actuated by solenoid has been developed for the feasibility of practical use of hydrogen fueled engine with direct injection and the precise control of fuel injection ratio in hydrogen fueled engine with dual injection. The gas-tightness of ball poppet injection valve is improved by the introduction of ball-shaped valve face, valve end typed spherical pair, and valve stem with rotating blade. Ball poppet valve is mainly closed by differential pressure due to the area difference between valve fillet and pressure piston. So, it can be operated by solenoid actuator with small driving force. From the evaluation of ball poppet injection valve, it was found that the gastightness and controlment of this injection valve are better than those of injection valve had been developed before.

  • PDF

Flow/solid Interaction Analysis for Design of Medical CSF-Flow Control Valve (의료용 CSF 제어 밸브 설계를 위한 유동/구조 상호작용 해석)

  • Won C. S.;Hur N.;Lee C .S.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2000.05a
    • /
    • pp.21-26
    • /
    • 2000
  • Pressure-flow control characteristics of a commercially available cerebrospinal flow(CSF) control shunt valve was tested using fluid-solid interaction analysis. Pre-stress of the valve diaphragm(membrane) was computed for proper valve opening. The results were ir good agreements with the valve specification listed in the commercially available CSF control valve. The results of the study can be effectively used to design variety of CSF control shunt valves.

  • PDF

Characteristic Experiment of a Hydraulic Control Valve by Using Electro-Rheological Fluid (ERF를 이용한 유압제어밸브의 특성실험)

  • Kim, Dong-Su;Park, Jae-Beom;Jang, Seong-Cheol
    • 연구논문집
    • /
    • s.30
    • /
    • pp.93-99
    • /
    • 2000
  • Electro-Rheological(ER) fluids change their apparent viscosity according to the electric field strength. The electrical and rheological properties of zeolite based the ER fluids were reported. The electric field dependent yield stress are obtained from experimental investigation on the Bingham property of the ER fluid. Using ER fluids, it is possible to directly interface between electric drop and flow rate of the ER fluid was hydraulic control valve measured under application of an electric field. The purpose of the present study is pressure drop measurement of an ER valve by using strain gage. The performance characteristics of the valve system are evalusted in terms of pressrue fixed with respect to the intensity of employed electric fields and flow rates. As a result, it is esperimentally confirmed that pressure control valve using ER fluids applicable to use in hydraulic power systems.

  • PDF

Design of Dual Pressure Regulator (이중압력 조절기 설계)

  • Kim, Dong-Soo;Kim, Kang-Dae;Kim, Myoung-Sub
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1226-1229
    • /
    • 2008
  • In this paper, we designed sandwich type pressure regulator for air pressure control system. As a result of research, we obtained several important conclusions. First, we decided theory of poppet valve and relief valve which are used in sandwich type pressure regulator, and then designed prototype of pressure regulator. Second, we organized circuit diagram of dual pressure regulator of air pressure control system.

  • PDF