• Title/Summary/Keyword: premature convergence

Search Result 98, Processing Time 0.022 seconds

A Hybrid Estimation of Distribution Algorithm with Differential Evolution based on Self-adaptive Strategy

  • Fan, Debin;Lee, Jaewan
    • Journal of Internet Computing and Services
    • /
    • v.22 no.1
    • /
    • pp.1-11
    • /
    • 2021
  • Estimation of distribution algorithm (EDA) is a popular stochastic metaheuristic algorithm. EDA has been widely utilized in various optimization problems. However, it has been shown that the diversity of the population gradually decreases during the iterations, which makes EDA easily lead to premature convergence. This article introduces a hybrid estimation of distribution algorithm (EDA) with differential evolution (DE) based on self-adaptive strategy, namely HEDADE-SA. Firstly, an alternative probability model is used in sampling to improve population diversity. Secondly, the proposed algorithm is combined with DE, and a self-adaptive strategy is adopted to improve the convergence speed of the algorithm. Finally, twenty-five benchmark problems are conducted to verify the performance of HEDADE-SA. Experimental results indicate that HEDADE-SA is a feasible and effective algorithm.

Sinusoidal Map Jumping Gravity Search Algorithm Based on Asynchronous Learning

  • Zhou, Xinxin;Zhu, Guangwei
    • Journal of Information Processing Systems
    • /
    • v.18 no.3
    • /
    • pp.332-343
    • /
    • 2022
  • To address the problems of the gravitational search algorithm (GSA) in which the population is prone to converge prematurely and fall into the local solution when solving the single-objective optimization problem, a sine map jumping gravity search algorithm based on asynchronous learning is proposed. First, a learning mechanism is introduced into the GSA. The agents keep learning from the excellent agents of the population while they are evolving, thus maintaining the memory and sharing of evolution information, addressing the algorithm's shortcoming in evolution that particle information depends on the current position information only, improving the diversity of the population, and avoiding premature convergence. Second, the sine function is used to map the change of the particle velocity into the position probability to improve the convergence accuracy. Third, the Levy flight strategy is introduced to prevent particles from falling into the local optimization. Finally, the proposed algorithm and other intelligent algorithms are simulated on 18 benchmark functions. The simulation results show that the proposed algorithm achieved improved the better performance.

An efficient approach for model updating of a large-scale cable-stayed bridge using ambient vibration measurements combined with a hybrid metaheuristic search algorithm

  • Hoa, Tran N.;Khatir, S.;De Roeck, G.;Long, Nguyen N.;Thanh, Bui T.;Wahab, M. Abdel
    • Smart Structures and Systems
    • /
    • v.25 no.4
    • /
    • pp.487-499
    • /
    • 2020
  • This paper proposes a novel approach to model updating for a large-scale cable-stayed bridge based on ambient vibration tests coupled with a hybrid metaheuristic search algorithm. Vibration measurements are carried out under excitation sources of passing vehicles and wind. Based on the measured structural dynamic characteristics, a finite element (FE) model is updated. For long-span bridges, ambient vibration test (AVT) is the most effective vibration testing technique because ambient excitation is freely available, whereas a forced vibration test (FVT) requires considerable efforts to install actuators such as shakers to produce measurable responses. Particle swarm optimization (PSO) is a famous metaheuristic algorithm applied successfully in numerous fields over the last decades. However, PSO has big drawbacks that may decrease its efficiency in tackling the optimization problems. A possible drawback of PSO is premature convergence leading to low convergence level, particularly in complicated multi-peak search issues. On the other hand, PSO not only depends crucially on the quality of initial populations, but also it is impossible to improve the quality of new generations. If the positions of initial particles are far from the global best, it may be difficult to seek the best solution. To overcome the drawbacks of PSO, we propose a hybrid algorithm combining GA with an improved PSO (HGAIPSO). Two striking characteristics of HGAIPSO are briefly described as follows: (1) because of possessing crossover and mutation operators, GA is applied to generate the initial elite populations and (2) those populations are then employed to seek the best solution based on the global search capacity of IPSO that can tackle the problem of premature convergence of PSO. The results show that HGAIPSO not only identifies uncertain parameters of the considered bridge accurately, but also outperforms than PSO, improved PSO (IPSO), and a combination of GA and PSO (HGAPSO) in terms of convergence level and accuracy.

An Optimization Algorithm with Novel Flexible Grid: Applications to Parameter Decision in LS-SVM

  • Gao, Weishang;Shao, Cheng;Gao, Qin
    • Journal of Computing Science and Engineering
    • /
    • v.9 no.2
    • /
    • pp.39-50
    • /
    • 2015
  • Genetic algorithm (GA) and particle swarm optimization (PSO) are two excellent approaches to multimodal optimization problems. However, slow convergence or premature convergence readily occurs because of inappropriate and inflexible evolution. In this paper, a novel optimization algorithm with a flexible grid optimization (FGO) is suggested to provide adaptive trade-off between exploration and exploitation according to the specific objective function. Meanwhile, a uniform agents array with adaptive scale is distributed on the gird to speed up the calculation. In addition, a dominance centroid and a fitness center are proposed to efficiently determine the potential guides when the population size varies dynamically. Two types of subregion division strategies are designed to enhance evolutionary diversity and convergence, respectively. By examining the performance on four benchmark functions, FGO is found to be competitive with or even superior to several other popular algorithms in terms of both effectiveness and efficiency, tending to reach the global optimum earlier. Moreover, FGO is evaluated by applying it to a parameter decision in a least squares support vector machine (LS-SVM) to verify its practical competence.

Improved DV-Hop Localization Algorithm Based on Bat Algorithm in Wireless Sensor Networks

  • Liu, Yuan;Chen, Junjie;Xu, Zhenfeng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.1
    • /
    • pp.215-236
    • /
    • 2017
  • Obtaining accurate location information is important in practical applications of wireless sensor networks (WSNs). The distance vector hop (DV-Hop) is a frequently-used range-free localization algorithm in WSNs, but it has low localization accuracy. Moreover, despite various improvements to DV-Hop-based localization algorithms, maintaining a balance between high localization accuracy and good stability and convergence is still a challenge. To overcome these shortcomings, we proposed an improved DV-Hop localization algorithm based on the bat algorithm (IBDV-Hop) for WSNs. The IBDV-Hop algorithm incorporates optimization methods that enhance the accuracy of the average hop distance and fitness function. We also introduce a nonlinear dynamic inertial weight strategy to extend the global search scope and increase the local search accuracy. Moreover, we develop an updated solutions strategy that avoids premature convergence by the IBDV-Hop algorithm. Both theoretical analysis and simulation results show that the IBDV-Hop algorithm achieves higher localization accuracy than the original DV-Hop algorithm and other improved algorithms. The IBDV-Hop algorithm also exhibits good stability, search capability and convergence, and it requires little additional time complexity and energy consumption.

Minimizing the total completion time in a two-stage flexible flow shop (2 단계 유연 흐름 생산에서 평균 완료 시간 최소화 문제)

  • Yoon, Suk-Hun
    • Journal of Convergence for Information Technology
    • /
    • v.11 no.8
    • /
    • pp.207-211
    • /
    • 2021
  • This paper addresses a two-stage flexible flow shop scheduling problem in which there is one machine in stage 1 and two identical machines in stage 2. The objective is the minimization of the total completion time. The problem is formulated by a mixed integer quadratic programming (MIQP) and a hybrid simulated annealing (HSA) is proposed to solve the MIQP. The HSA adopts the exploration capabilities of a genetic algorithm and incorporates a simulated annealing to reduce the premature convergence. Extensive computational tests on randomly generated problems are carried out to evaluate the performance of the HSA.

Improvement of the GA's Convergence Speed Using the Sub-Population (보조 모집단을 이용한 유전자 알고리즘의 수렴속도 개선)

  • Lee, Hong-Kyu;Lee, Jae-Oh
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.10
    • /
    • pp.6276-6281
    • /
    • 2014
  • Genetic Algorithms (GAs) are efficient methods for search and optimization problems. On the other hand, there are some problems associated with the premature convergence to local optima of the multimodal function, which has multi peaks. The problem is related to the lack of genetic diversity of the population to cover the search spaces sufficiently. A sharing and crowding method were introduced. This paper proposed strategies to improve the convergence speed and the convergence to the global optimum for solving the multimodal optimization function. These strategies included the random generated sub-population that were well-distributed and spread widely through search spaces. The results of the simulation verified the effects of the proposed method.

Optimum Design of Sandwich Panel Using Hybrid Metaheuristics Approach

  • Kim, Yun-Young;Cho, Min-Cheol;Park, Je-Woong;Gotoh, Koji;Toyosada, Masahiro
    • Journal of Ocean Engineering and Technology
    • /
    • v.17 no.6
    • /
    • pp.38-46
    • /
    • 2003
  • Aim of this article is to propose Micro-Genetic Simulated Annealing (${\mu}GSA$) as a hybrid metaheuristics approach to find the global optimum of nonlinear optimisation problems. This approach combines the features of modern metaheuristics such as micro-genetic algorithm (${\mu}GAs$) and simulated annealing (SA) with the general robustness of parallel exploration and asymptotic convergence, respectively. Therefore, ${\mu}GSA$ approach can help in avoiding the premature convergence and can search for better global solution, because of its wide spread applicability, global perspective and inherent parallelism. For the superior performance of the ${\mu}GSA$, the five well-know benchmark test functions that were tested and compared with the two global optimisation approaches: scatter search (SS) and hybrid scatter genetic tabu (HSGT) approach. A practical application to structural sandwich panel is also examined by optimism the weight function. From the simulation results, it has been concluded that the proposed ${\mu}GSA$ approach is an effective optimisation tool for soloing continuous nonlinear global optimisation problems in suitable computational time frame.

An efficient genetic algorithm for the design optimization of cold-formed steel portal frame buildings

  • Phan, D.T.;Lim, J.B.P.;Tanyimboh, T.T.;Sha, W.
    • Steel and Composite Structures
    • /
    • v.15 no.5
    • /
    • pp.519-538
    • /
    • 2013
  • The design optimization of a cold-formed steel portal frame building is considered in this paper. The proposed genetic algorithm (GA) optimizer considers both topology (i.e., frame spacing and pitch) and cross-sectional sizes of the main structural members as the decision variables. Previous GAs in the literature were characterized by poor convergence, including slow progress, that usually results in excessive computation times and/or frequent failure to achieve an optimal or near-optimal solution. This is the main issue addressed in this paper. In an effort to improve the performance of the conventional GA, a niching strategy is presented that is shown to be an effective means of enhancing the dissimilarity of the solutions in each generation of the GA. Thus, population diversity is maintained and premature convergence is reduced significantly. Through benchmark examples, it is shown that the efficient GA proposed generates optimal solutions more consistently. A parametric study was carried out, and the results included. They show significant variation in the optimal topology in terms of pitch and frame spacing for a range of typical column heights. They also show that the optimized design achieved large savings based on the cost of the main structural elements; the inclusion of knee braces at the eaves yield further savings in cost, that are significant.

A Study on Improvement of Genetic Algorithm Operation Using the Restarting Strategy (재시동 조건을 이용한 유전자 알고리즘의 성능향상에 관한 연구)

  • 최정묵;이진식;임오강
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.15 no.2
    • /
    • pp.305-313
    • /
    • 2002
  • The genetic algorithm(GA), an optimization technique based on the theory of natural selection, has proven to be relatively robust means to search for global optimum. It is converged near to the global optimum point without auxiliary information such as differentiation of function. When studying some optimization problems with continuous variables, it was found that premature saturation was reached that is no further improvement in the object function could be found over a set of iterations. Also, the general GA oscillates in the region of the new global optimum point so that the speed of convergence is decreased. This paper is to propose the concept of restarting and elitist preserving strategy as a measure to overcome this difficulty. Some benchmark examples are studied involving 3-bar truss and cantilever beam with plane stress elements. The modifications to GA improve the speed of convergence.