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Abstract 
To address the problems of the gravitational search algorithm (GSA) in which the population is prone to 
converge prematurely and fall into the local solution when solving the single-objective optimization problem, 
a sine map jumping gravity search algorithm based on asynchronous learning is proposed. First, a learning 
mechanism is introduced into the GSA. The agents keep learning from the excellent agents of the population 
while they are evolving, thus maintaining the memory and sharing of evolution information, addressing the 
algorithm’s shortcoming in evolution that particle information depends on the current position information 
only, improving the diversity of the population, and avoiding premature convergence. Second, the sine function 
is used to map the change of the particle velocity into the position probability to improve the convergence 
accuracy. Third, the Levy flight strategy is introduced to prevent particles from falling into the local 
optimization. Finally, the proposed algorithm and other intelligent algorithms are simulated on 18 benchmark 
functions. The simulation results show that the proposed algorithm achieved improved the better performance. 
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1. Introduction 
Optimization theory has made great progress in recent years [1], and swarm intelligence algorithms 

attracting extensive attention. Their common goal is to seek the optimal solution for the problems [2]. In 
2009, the gravitational search algorithm (GSA) was proposed by Rashedi et al. [3]. The inspiration for 
this algorithm was derived from Newtonian gravity. Using the interaction between agents in the group, 
each agent attracts each other to generate swarm intelligence, and the optimization search is completed. 
The algorithm has strong development ability, and the convergence accuracy and convergence rate are 
also significantly superior to those of other algorithms [4-6]. It has attracted more and more scholars’ 
attention and is widely used in many engineering fields, such as engineering production scheduling [7], 
because of its simple concept, few setting parameters, and easy implementation. 

Many papers have been proposed to further improve the efficiency of GSA. Rashedi et al. [8] combined 
binary and gravitational search algorithms and proposed a binary gravitational search algorithm. The 
particle velocity value is related to the probability of the particle position change, which expands the 

※ This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which 
permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. 
Manuscript received July 10, 2020; first revision March 25, 2021; accepted January 24, 2022. 
*Corresponding Author: Xinxin Zhou (zxx51@qq.com) 
1 School of Computer Science, Northeast Electric Power University, Jilin, China (zxx51@qq.com) 
2 Guangdong Yudean Jinghai Power Generation Co. Ltd, Jieyang, China (1481812198@qq.com)

J Inf Process Syst, Vol.18, No.3, pp.332~343, June 2022 ISSN 1976-913X (Print) 
https://doi.org/10.3745/JIPS.01.0088 ISSN 2092-805X (Electronic) 



Xinxin Zhou and Guangwei Zhu  

 

J Inf Process Syst, Vol.18, No.3, pp.332~343, June 2022 | 333 

application scope of the gravitational search algorithm. The authors of [9] and [10] combined the particle 
swarm algorithm (PSO) with the gravity algorithm, and improving the performance of GSA. Yang et al. 
[11] proposed immune GSA based on the basic framework of GSA, combined with the immune 
information processing mechanism of the immune system. To increase population diversity, and avoid 
premature convergence, relevant scholars introduced the idea of chaos into the GSA: cat chaotic mapping 
is introduced into GSA in [12], which changed the way the original GSA population was generated, 
changing random initialization into cat chaotic initialization population, and adopting a little chaos 
interference to jump out of the local optimum. Gao et al. [13] replaced the original random sequence with 
the chaotic sequence that was generated by logistic mapping and used chaos as the population local 
search’s method. A universal GSA that was based on adaptive chaotic mutation was proposed by 
literature [14]. In this paper, the concepts of average particle distance and chaotic search mutation were 
introduced into the algorithm. Boundary mutation constraint processing was adopted, and the local 
exploration ability of the algorithm was enhanced. Xu and Wang [15] proposed gravity search algorithm 
based on weight. During the iterative process, a weight-related to the mass of contemporary particles is 
added to the inertial mass of the particle, and the accuracy of the algorithm was improved effectively. 
Zhang and Gong [16] and Li et al. [17] introduced a differential mutation strategy when updating 
individual particle positions, both of which showed that the optimization performance of the algorithm 
was improved by using differential evolution strategy. 

Although GSA has shown good performance compared with some traditional methods, it still confronts 
some problems when solving single objective optimization problems. In this paper, a sine map jumping 
gravity search algorithm based on asynchronous learning is proposed. The main contributions of this 
paper are listed as follows: 

(1) By introducing learning factors, the diversity of the population is improved and the premature 
convergence of this algorithm is avoided. 

(2) An improved map method based on a sine function is proposed. The sine value of particle velocity 
is mapped to the probability of particle position change. This enhances the convergence accuracy 
of this algorithm. 

(3) This particle jumping mechanism is adopted. This jumping strategy prevents particles from going 
down into local optimal solution. 

The remainder of this article is shown as follows: the GSA algorithm is given in Section 2. The 
improved SIN-GSA is presented in Section 3. Simulation experiments and results analysis are presented 
in Section 4. Finally, conclusions and future research contents are brought in Section 5. 

 
 

2. Gravity Search Algorithm 
The GSA has four elements: agent position, active gravity mass, passive gravity mass, and inertial 

mass. Consider a system with 𝑁 agents (masses). The position of 𝑖௧௛ agent is defined as: 
 𝑋௜ = ൫𝑥௜ଵ, 𝑥௜ଶ, … , 𝑥௜஽൯ (1)
 

where, 𝑖 = 1,2, … , 𝑁, 𝑋௜஽ is the information of 𝑖௧௛ agent in the 𝑑௧௛ dimension. In 𝑖௧௛ iteration, the force 
of agent “𝑖” on agent “𝑗” is as follows: 
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𝐹௜௝஽(𝑡) = 𝐺(𝑡) 𝑀௔௝(𝑡) × 𝑀௕௜(𝑡)𝑅௜௝(𝑡) + 𝜀 (𝑋௝஽(𝑡) − 𝑋௜஽(𝑡)) (2)

 

where 𝜀 is a small constant, and 𝐺(𝑡) is the gravitational constant on time 𝑡, which is related to the age 
of the universe as follows: 
 G(t) = 𝐺଴ × 𝑒ିఈ௧ ்ൗ  (3)

 

where 𝐺଴ is the gravitational constant, 𝛼 is the given constant, and 𝑇 is the current iteration number. 
With the assumption that the gravitational mass and the inertial mass are equal, the mass of the object 

can be updated according to appropriate rules. The method of individual mass and inertial mass is 
calculated as follows: 

 

⎩⎪⎨
⎪⎧𝑀௔௜ = 𝑀௕௜ = 𝑀௜௜, 𝑖 = 1,2, … , 𝑁𝑚௜(𝑡) = 𝑓𝑖𝑡௜(𝑡) − 𝑤𝑜𝑟𝑠𝑡(𝑡)𝑏𝑒𝑠𝑡(𝑡) − 𝑤𝑜𝑟𝑠𝑡(𝑡)𝑀௜(𝑡) =  𝑚௜(𝑡) ∑ 𝑚௝(𝑡)ே௝ୀଵ൘  (4)

 

where 𝑀௜௜ is the inertial gravitational mass of 𝑖௧௛ agent, 𝑓𝑖𝑡௜(𝑡) represents the fitness value of the agent 
at the time 𝑡, 𝑤𝑜𝑟𝑠𝑡(𝑡) is the fitness value of the agent with the smallest mass, and 𝑏𝑒𝑠𝑡(𝑡) is the fitness 
value of the agent with the largest mass. With the global minimization problem taken as an example, 𝑏𝑒𝑠𝑡(𝑡) and 𝑤𝑜𝑟𝑠𝑡(𝑡) can be defined as follows: 

 ൜𝑤𝑜𝑟𝑠𝑡(𝑡) = max 𝑓𝑖𝑡௜(𝑡)𝑏𝑒𝑠𝑡(𝑡) = min 𝑓𝑖𝑡௜(𝑡) , 𝑓𝑜𝑟 𝑖 ∈ {1,2, … , 𝑁} (5)

 

On the basis of Newton’s second law, the acceleration of agent 𝑖 in 𝑑௧௛ dimension at time 𝑡 is as follows: 
 𝑎௜ௗ(𝑡) =  𝐹௜ௗ(𝑡)𝑀௜௜(𝑡) (6)

 

During the iteration of agents, the speed and position update method of agent 𝑖 can be defined as: 
 𝑣௜ௗ(𝑡 + 1) = 𝑟𝑎𝑛𝑑௜ × 𝑣௜ௗ(𝑡) + 𝑎௜ௗ(𝑡) (7)𝑥௜ௗ(𝑡 + 1) =  𝑥௜ௗ(𝑡) + 𝑣௜ௗ(𝑡 + 1) (8)
 

where 𝑟𝑎𝑛𝑑௜ takes a value in the interval [0,1], and used in the speed update formula to increase the 
randomness of agent search. 

 
 

3. Sinusoidal Map Jumping Gravity Search Algorithm based on 
Asynchronous Learning 

3.1 Asynchronous Learning Factors 

The update formulas of agent velocity and displacement in the iterative process of GSA are shown as 



Xinxin Zhou and Guangwei Zhu  

 

J Inf Process Syst, Vol.18, No.3, pp.332~343, June 2022 | 335 

formulas (7) and (8). Each agent depends only on the gravity between the agents for optimization, which 
is affected by the current position information only, which indicating a lack of memory algorithm. At the 
beginning of the iteration, the agents are evenly distributed in the search space. As the iteration 
progresses, the surrounding agents will gather towards this better solution as long as a better solution is 
found. As the agents continue to gather, in the later stages of the iteration, the agents that gathered around 
the local optimal solution almost all have the same inertial mass, their attracting and attracting forces are 
almost equal, the population diversity disappears, and the algorithm will stagnate. 

To alleviate the deficiency of the GSA, in which the diversity of the population is reduced in the late 
stage of iterations, the concept of a learning factor is introduced during the optimization of the GSA. By 
adjusting the learning factor, the memory and information sharing capabilities of the population agents 
during the evolution process are adjusted. Through the sharing of the elite individual’s own position 
information and the exchange and sharing of elite individual information during the population iteration 
process, the population diversity is improved to avoid premature convergence. Learning factor 𝑐ଵ 
represents the agent’s learning from its own evolutionary mechanism, which is called memory, and 
retains its own individuals as much as possible. Thus, the diversity of the population is maintained and 
the overall development capability is enhanced based on this strategy. Individuals should enhance their 
ability to learn and communicate with the best individuals, that is, to share information, and to enhance 
local exploration capabilities. Therefore, the learning factor 𝑐ଶ  represents the learning of the agent 
evolution mechanism to the population. The learning factor 𝑐ଶ can effectively alleviate the stagnation of 
the GSA. The agents obtain the optimal solution through memory and information sharing. SIN-GSA 
uses the currently obtained optimal solution to guide the agents with large inertial mass to move toward 
the global optimal direction, thus preventing all agents from converging toward the optimal solution. 

The two learning factors change differently with time during the optimization process, so they are 
called asynchronously changing learning factors. During the early stage of evolution, the self-learning 
ability should be stronger to avoid the loss of the optimal solution; in the later stage of the evolution, the 
population learning ability should be stronger to avoid the local optimal solution, so the formula for the 
learning factor is as follows: 

 𝑐ଵ = 𝑐ଵ_௜௡௜ + ൫𝑐ଵ_௙௜௡ − 𝑐ଵ_௜௡௜൯ × 𝑡/𝑇 (9)𝑐ଶ = 𝑐ଶ_௜௡௜ + ൫𝑐ଶ_௙௜௡ − 𝑐ଶ_௜௡௜൯ × 𝑡/𝑇 (10)
 

where, 𝑐௜௡௜ is the initial learning ability, 𝑐௙௜௡ is the learning ability at the end of the iteration, 𝑡 is the 
current iteration number, and 𝑇 is the maximum iteration number. 

 
3.2 Sine Function Mapping 

To further improve the convergence performance of the GSA, a sine function mapping strategy is 
proposed. With the use of the sine function, the sine value of the agent velocity is mapped to the 
probability that the agent position will change, and the performance of the algorithm is improved. 

The search speed of the agent changes from fast to slow during the algorithm optimization process. 
When the agents speed is fast, it indicates that the current position of the agent has not reached the optimal 
position. Thus, the optimal value needs to be found as soon as possible; when the agent’s speed is slow, the 



Sinusoidal Map Jumping Gravity Search Algorithm Based on Asynchronous Learning 

 

336 | J Inf Process Syst, Vol.18, No.3, pp.332~343, June 2022 

position of the agents is close to the optimal position. When the optimal position is reached, the speed 
of the agent becomes zero. On the basis of these conditions, a sine function mapping strategy is 
proposed to improve the convergence performance of the GSA. The sine mapping function is shown 
in formula (11): 

 

𝑓(𝑣) = ൞1, 𝑣 < − 𝜋2 𝑜𝑟 𝑣 > 𝜋2|sin (𝑣)|, 𝑣𝜖[− 𝜋2 , 𝜋2] (11)

 
where 𝑣 is the velocity value of the agent, and 𝑓(𝑣) is the sine value of the velocity mapped to the 
probability of the agent position vector will change. When the velocity value is within the 
interval[− గଶ , గଶ] , the sine value of velocity is mapped to the probability of agent position change. In this 

algorithm, a mandatory position update strategy is adopted. When the absolute value of the speed is 
larger, the greater probability value is given to the agent, and the convergence speed of the algorithm is 
thus increased. When the absolute value of the speed is small, a smaller probability is given to the agent 
and the convergence accuracy of the algorithm is thus improved. When the speed is outside the 
interval[− గଶ , గଶ], the probability of the position changing is 1. 

 
3.3 Jumping Mechanism 

In the GSA, the agent adjusts its own speed and position according to the gravity it receives. The agent 
will be limited by itself and the global optimal. Multiple extreme points are present in the multimodal 
problem, which is why the agents will gather in the local optimal when they are close to it. When the 
agents fall into the local optimal, jumping out of the region to explore new unknown regions is difficult. 
Therefore, the Levy flight mechanism is introduced, and the local optimal agent is given the ability to 
explore new areas. 

Levy flight [18] is a random walk search method that can easily produce drastic changes during the 
search process, enabling the algorithm to jump out of the local optimal. Retain the position of the optimal 
agent of the population after the 𝑡௧௛ iteration, and do a Levy search for it. The path of the Levy flight 
search is calculated as follows: 

 𝑥 = 𝑢 𝑣 ଵఉ൘  (12)

 
Among them, 𝑥  is Levi flight search path, both 𝑥  and 𝑢  follow a normal distribution, where 𝑢~𝑁(0, 𝜎ଶ), 𝑣~𝑁(0,1). 𝜎 as following: 
 

σ = ൝𝛤(1 + 𝛽)𝑠𝑖𝑛 (𝜋𝛽/2) 𝛤[(1 + 𝛽)/2]2ఉିଵଶ 𝛽൘ ൡଵ ఉൗ
 (13)

 
Among them, 𝛽 takes the value in (0 ~ 2), 𝛤 is the gamma function. The search path 𝐿𝑒𝑣𝑦(𝜀) for Levy 

flight can be determined by the above two formulas. 
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3.4 Pseudo-Code of SIN-GSA 

Algorithm 1 is the pseudo-code of the SIN-GSA. 
 

Algorithm 1. Sinusoidal map jumping gravity search algorithm based on asynchronous learning 

Input: Population size 𝑁; Total number of iterations 𝑇; Initialize parameters of agents 𝑋 and 𝑉  
For iteration = 1 : max_iteration do 
For agent i = 1 : N do 
    Update fitness of agent i 
End For 
For agent i = 1 : N do 
    Update mass of agent i 
    Update learning factors c1 and c2 
    Calculate force, acceleration 
    Use sine Function mapping and Levy’s strategy 
Update velocity, location of agent i 
End For 
End For 
Output: Agent location with the best fitness  

 
 

4. Experiment and Analysis 

4.1 Test Functions and Evaluation Criteria 

To evaluate the performance of SIN-GSA, 18 test functions with different characteristics are selected. 
The details of the test functions are shown in Table 1. The functions are divided into three groups: 𝐹ଵ −𝐹଻ are high-dimensional unimodal functions, which are used to test the optimization accuracy of the 
algorithms. 𝐹 − 𝐹ଵଷ are high-dimensional multimodal functions, which are used to test the global search 
performance of the algorithms and the ability to avoid premature convergence. 𝐹ଵସ − 𝐹ଵ଼  are low-
dimensional multimodal functions, which are used to test the robustness of the algorithms. 

The following performance indicators are mainly involved: 
(1) Solution accuracy: When the algorithm reaches a certain number of evaluations, the best accuracy 

can be obtained. The closer the value of the solution is to the theoretical optimal value, the better. 
(2) Convergence speed: The algorithm is measured by the optimal solution that can be obtained under 

the same evaluation times, or by the evaluation times required to reach the optimal solution. 

The algorithms were executed 30 times for each test function to obtain the statistical results. When the 
max number of iterations is 1000, the mean, best and the standard deviation (Std) of the solutions at the 
max number of iterations of 1000 are reported. 

 
4.2 Comparison of Convergence Accuracy 

The proposed SIN-GSA is compared with GSA [3] and PSO-GSA [10]. In this experiment, the mean, 
best and Std values were obtained by GSA, PSO-GSA and SIN-GSA. The experimental results are 
reported in Table 2, and the best results are highlighted in bold. 
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Table 1. Test functions 
Benchmark functions Dimension Range Optimal 
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Table 2. Experimental results of convergence accuracy 

 
GSA PSO-GSA SIN-GSA 

Best Mean Std Best Mean Std Best Mean Std 𝐹ଵ 1.85e-16 4.16e-16 1.22e-16 2.31e-19 1.02e+03 4.03e+03 0 0 0 𝐹ଶ 5.50e-08 7.09e-08 6.10e-09 10.00 5.05 17.12 0 0 0 𝐹ଷ 171.77 378.68 128.76 805.41 5.52e+03 6.19e+03 0 0 0 𝐹ସ 7.45e-09 0.03 0.11 24.46 41.62 24.59 0 0 0 𝐹ହ 27.07 59.63 112.92 12.55 28.46 17.98 24.18 25.19 0.36 𝐹଺ 1.67e-18 0 0 2.13e-19 990.023 3.02e+03 0 0 0 𝐹଻ 0.01 0.02 0.01 0.02 0.05 0.02 1.09e-05 5.25e-04 5.80e-07 𝐹  -3585.80 -2734.80 406.16 -7.12e+03 -7.77e+03 700.57 -1.44e+04 -1.50e+04 328 𝐹ଽ 7.96 14.16 4.74 95.52 149.57 40.34 3.65e-15 6.78e-14 8.26e-20 𝐹ଵ଴ 9.58e-09 1.35e-08 1.87e-09 17.11 8.18 7.46 8.88e-16 8.88e-16 0 𝐹ଵଵ 1.89 4.95 1.71 0.01 21.08 38.82 8.32e-16 5.79e-15 3.31e-17 𝐹ଵଶ 2.81e-18 0.11 0.23 0.52 3.76 4.43 0.10 0.21 0.06 𝐹ଵଷ 4.36e-17 0.01 0.03 11.86 9.38 7.87 1.42 1.95 0.19 𝐹ଵସ 0.998 3.995 3.318 0.998 2.682 4.301 0.998 1.792 0.989 𝐹ଵହ 9.89e-04 2.8e-03 1.4e-03 0.0012 0.0039 0.0075 3.075e-04 3.426e-04 1.747e-04 𝐹ଵ଺ 3.00 3.00 6.84e-15 3.00 3.00 1.27e-15 3.00 3.00 1.79e-16 𝐹ଵ଻ -3.86 -3.86 1.44e-04 -3.86 -3.86 2.48e-15 -3.86 -3.86 2.05e-15 𝐹ଵ଼ -3.3220 -3.3220 5.71e-16 -3.3220 -3.2546 5.99e-02 -3.3220 -3.3220 3.17e-18 

The best results are highlighted in bold. 
 
To display the optimization process of the algorithms intuitively, as shown in Fig. 1, the optimization 

iteration curves of part test functions are provided. In Fig. 1, the abscissa represents the number of 
iterations, and the ordinate represents the average fitness value (logarithm with e as the base). 

The analysis of Table 2 and Fig. 1 indicates that the high-dimensional unimodal function (𝐹ଵ − 𝐹଻) 
examines the algorithm’s global search capabilities. Among the seven measured functions, the SIN-GSA 
can make the five functions converge to the theoretical value of zero. Even if 𝐹ହ and 𝐹଻ did not converged 
to the theoretical value of 0, the optimal value, average value and standard deviation value converged to 
in 1000 iterations can be significantly improved. As shown in Table 2, for the global optimization ability, 
the proposed SIN-GSA has the strongest. 𝐹 − 𝐹ଵଷ are high-dimensional multimodal functions that have many local extremum points, which are 
used to test the ability of the algorithm to avoid premature convergence. 𝐹ଽ is a typical nonlinear multi-
modal function. There are many local extreme points in its search space, and its peak shape shows a jump 
shape, which will increase the search difficulty of the algorithm. Table 2 shows that better values were 
obtained by the proposed algorithm for the benchmark functions 𝐹ଽ − 𝐹ଵଵ. In comparison, neither the 
GSA nor the PSO-GSA can obtain the ideal values of these two test functions. 

The low-dimensional multimodal functions (𝐹ଵସ − 𝐹ଵ଼ ) have relatively few local extremums, and 
global search is easier. As shown in Table 2, when the low-dimensional multimodal function is solved, 
each index of SIN-GSA is the minimum value and the theoretical optimal values can be obtained. 
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(a) (b) (c) 

 
(d) (e) (f) 

 
(g) (h) (i) 

Fig. 1. Test functions convergence diagram. 
 

4.3 Comparison of Convergence Speed 

When considering the convergence rate, we adopt the accuracy of the solution at the same number of 
iterations. 𝐹ଵ − 𝐹ଵଷ  are high-dimensional functions. The optimal solutions were counted when the 
number of iterations is 500, 1000, and 1500. The optimal solutions of the low-dimension functions (𝐹ଵସ −𝐹ଵ଼) are counted when the function evaluation times are 400, 600, and 800. Tables 3 and 4 show the 
experiment results. 

Under the same evaluation times, the convergence accuracy of the proposed SIN-GSA has significantly 
improved compared with the GSA and PSOGSA. SIN-GSA can converge to the theoretical optimal value 
faster than the original algorithm. The convergence speed of the proposed algorithm is significantly 
improved, especially when the population is increased. 
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Table 3. Experimental results of convergence speed (F1-F13) 

 
GSA PSO-GSA SIN-GSA 

500 1000 1500 500 1000 1500 500 1000 1500 𝐹ଵ 2.01e-15 3.37e-16 1.93e-16 3.5563 2.48e-19 2.30e-19 0 0 0 𝐹ଶ 7.34e-08 8.15e-08 5.70e-08 6.53e-09 2.07e-09 1.95e-09 0 0 0 𝐹ଷ 7.37e+02 2.27e+02 2.98e+02 1.73e+04 5.72e+03 1.00e+04 0 0 0 𝐹ସ 6.62 9.77e-09 8.05e-09 31.57 27.55 24.68 0 0 0 𝐹ହ 27.93 27.39 27.08 91.23 23.91 23.69 26.96 25.02 23.34 𝐹଺ 2 0 0 3.26e-02 1.94e-19 1.71e-19 0 0 0 𝐹଻ 7.58e-02 2.96e-02 6.13e-03 1.23e-01 4.50e-02 7.16e-02 3.41e-03 5.53e-04 5.28e-05 𝐹  -3.3e+03 -2.3e+03 -2.7e+03 -7.8e+03 -7.2e+03 -7.1e+03 -5.8e+03 -4.8e+03 -5.9e+03 𝐹ଽ 1.89e+01 1.29e+01 1.69e+01 1.02e+02 1.24e+02 1.28e+02 5.42e-14 5.42e-14 5.42e-14 𝐹ଵ଴ 1.70e-08 1.51e-08 1.14e-08 16.67 16.74 17.64 8.88e-16 8.88e-16 8.88e-16 𝐹ଵଵ 19.54 3.66 0.99 1.04 3.84e-09 1.11e-16 0 0 0 𝐹ଵଶ 0.57 1.24e-05 2.31e-18 2.81 2.19 1.63 0.21 0.17 0.17 𝐹ଵଷ 3.65e-08 1.60e-16 4.69e-17 41.12 25.44 3.22e-20 1.92 2.08 1.98 

The best results are highlighted in bold. 
 

Table 4. Experimental results of convergence speed (F14-F18) 

 
GSA PSO-GSA SIN-GSA 

400 600 800 400 600 800 400 600 800 𝐹ଵସ 13.69 3.97 4.32 0.998 0.998 0.998 0.998 0.998 0.998 𝐹ଵହ 8.03e-03 2.92e-03 8.92e-04 7.26e-04 5.36e-04 6.46e-04 3.07e-04 3.07e-04 3.07e-04 𝐹ଵ଺ 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 𝐹ଵ଻ -3.80 -3.85 -3.86 -3.82 -3.84 -3.86 -3.86 -3.86 -3.86 𝐹ଵ଼ -3.3220 -3.3220 -3.3220 -3.3220 -3.3220 -3.3220 -3.3220 -3.3220 -3.3220 

The best results are highlighted in bold. 
 
 

5. Conclusion 

The SIN-GSA based on asynchronous learning is proposed to address the problems of insufficient 
convergence accuracy of the GSA. The main work of this paper is summarized as follows. (1) With the 
introduction of a learning mechanism into GSA, particles evolve themselves while keeping learning from 
outstanding particles in the population, and they remember their own evolution information and optimal 
particle evolution information during the evolution process to maintain the memory and sharing of 
evolutionary information, improve population diversity, and avoid premature convergence. (2) The 
concept of sine function mapping is introduced into GSA, and the sine function is used to map the change 
in particle velocity to the probability of position change, giving the particles strong position change 
information, and improving the algorithm convergence accuracy and speed. (3) With the introduction of 
the concept of Levy flight in GSA, the Levy flight strategy can make particles shake during the search, 
change the path of particle search, strengthen the algorithm searches for the local area, jump out of the 
local optimal area, and avoid falling into the local optimal solution. (4) By selecting representative 
different peak shape test functions for simulation experiments, and comparing with other improved 
algorithms, the results show that SIN-GSA has better optimization performance. 
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In future work, SIN-GSA can be extended to handle combinatorial optimization and constrained 
optimization problems. In addition, we can also employ SIN-GSA for solving more complex real-world 
problems. 
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