• 제목/요약/키워드: preliminary design for buildings

검색결과 89건 처리시간 0.018초

A Multiple Database-Enabled Design Module with Embedded Features of International Codes and Standards

  • Kwon, Dae Kun;Kareem, Ahsan
    • 국제초고층학회논문집
    • /
    • 제2권3호
    • /
    • pp.257-269
    • /
    • 2013
  • This study presents the development of an advanced multiple database-enabled design module for high-rise buildings (DEDM-HR), which seamlessly pools databases of multiple high frequency base balance measurements from geographically dispersed locations and merges them together to expand the number of available building configurations for the preliminary design. This feature offers a new direction for the research and professional communities that can be utilized to efficiently pool multiple databases therefore expanding the capability of an individual database and improving the reliability of design estimates. This is demonstrated, in this study, by the unprecedented fusion of two major established databases, which facilitates interoperability. The DEDM-HR employs a cyberbased on-line framework designed with user-friendly/intuitive web interfaces for the convenient estimation of wind-induced responses in the alongwind, acrosswind and torsional directions with minimal user input. In addition, the DEDM-HR embeds a novel feature that allows the use of wind characteristics defined in a code/standard to be used in conjunction with the database. This supplements the provisions of a specific code/standard as in many cases guidance on the acrosswind and torsional response estimates is lacking. Through an example, results from several international codes and standards and the DEDM-HR with the embedded features are compared. This provision enhances the scope of the DEDM-HR in providing an alternative design tool with nested general provisions of various international codes and standards.

Optimal stiffness distribution in preliminary design of tubed-system tall buildings

  • Alavi, Arsalan;Rahgozar, Reza
    • Structural Engineering and Mechanics
    • /
    • 제65권6호
    • /
    • pp.731-739
    • /
    • 2018
  • This paper presents an optimal pattern for distributing stiffness along a framed tube structure through an analytic equation, which may be used during the preliminary design stage. Most studies in this field are computationally intensive and time consuming, while a hand-calculation method, as presented here, is a more suitable tool for sensitivity analyses and parametric studies. Approach in development of the analytic model is to minimize the mean compliance (external work) for a given volume of material. A variational statement of the problem is made, and a specified deformation-profile is obtained as the necessary condition for a minimum; enforcing this condition, stiffness is then computed. Due to some near-zero values for stiffness, the problem is modified by considering a lower bound constraint. To deal with this constraint, the design domain is assumed to be divided into two zones of constant stiffness and constant curvature; and the problem is restated in terms of these concepts. It will be shown that this methodology allows for easy computation of stiffness through an analytic and dimensionless equation, valid in any system of units. To show practicality of the proposed method, a tubed-system structure with uniform stiffness distribution is redesigned using the proposed model. Comparative analyses of the results reveal that in addition to simplicity of the proposed method, it provides a rather high degree of accuracy for real-world problems.

파형강판벽의 등가 양방향 대각 스트럿 모델을 이용한 기존 건물의 내진성능 평가 (Seismic Performance Evaluation of Existing Buildings Using Equivalent Double Diagonal Strut Model for Corrugated Steel Plate Walls)

  • 이창환;손주기
    • 한국공간구조학회논문집
    • /
    • 제20권1호
    • /
    • pp.87-94
    • /
    • 2020
  • A corrugated steel plate wall (CSPW) system is advantageous to secure the strength and stiffness required for lateral force resistance because of its high out-of-plane stability. It can also stably dissipate large amounts of energy even after peak strength. In this paper, a preliminary study has been carried out to use the CSPW system in the seismic retrofit of existing reinforced concrete (RC) moment frame buildings. The seismic performance for an example building was evaluated, and then a step-by-step retrofit design procedure for the CSPW was proposed. An equivalent analytical model of the CSPW was also introduced for a practical analysis of the retrofitted building, and the strengthening effect was finally evaluated based on the results of nonlinear analysis.

Response spectrum analysis for regular base isolated buildings subjected to near fault ground motions

  • Moussa, Leblouba
    • Structural Engineering and Mechanics
    • /
    • 제43권4호
    • /
    • pp.527-543
    • /
    • 2012
  • This paper presents a response spectrum analysis procedure suitable for base isolated regular buildings subjected to near fault ground motions. This procedure is based on the fact that the isolation system may be treated separately since the superstructure behaves as a rigid body on well selected isolation systems. The base isolated building is decomposed into several single-degree of freedom systems, the first one having the total weight of the building is isolated while the remainder when superposed they replicate approximately the behavior of the superstructure. The response of the isolation system is governed by a response spectrum generated for a single isolated mass. The concept of the procedure and its application for the analysis of base isolated structures is illustrated with an example. The present analysis procedure is shown to be accurate enough for the preliminary design and overcomes the limits of applicability of the conventional linear response spectrum analysis.

곡면 최적화 알고리즘을 활용한 비정형 건축물 외장공사비 개산견적에 관한 연구 (Development of the Preliminary Cost Estimate Method for the Free-Form Building Facade Trade in Conjunction with the Panel Optimization Algorithm Process)

  • 임장식;옥종호
    • 한국건설관리학회논문집
    • /
    • 제15권4호
    • /
    • pp.95-106
    • /
    • 2014
  • 비정형 건축물의 건설에서 가장 어려운 공정은 복잡한 디자인으로 이루어진 외장패널을 제작 및 시공하는 것이다. 설계자는 비정형 건물의 부드러운 곡면형태를 훼손하지 않는 범위 안에서 복잡한 곡면을 갖는 패널의 양을 축소하여 패널제작 및 시공비용을 최적화함이 필요하다. 특히 설계초기단계에서 다양한 건축외관을 디자인하고 각 설계대안의 예상공사비를 추정하면서 설계의도를 충족하는 적절한 대안을 찾는 것은 대단히 중요하다. 하지만 대부분의 설계사무소들은 비정형 건축물의 패널최적화에 대한 이해, 기술 및 데이터가 부족하여 초기설계 단계에서 예상공사비 산정, 설계 대안 비교를 통한 예상공사비 조정등의 업무를 효과적으로 수행하지 못하고 있는 실정이다. 본 연구는 비정형 건축물 설계자가 쉽게 접할 수 있는 범용 어플리케이션을 이용하여 비정형 건축물의 외장패널을 최적화하는 방법을 제시하며 최적화 결과와 국내 비정형 건설프로젝트의 외장공사에 대한 실적공사비를 접목하여 최적화 진행에 따른 공사비 변화정도를 산출하는 방법을 제시한다. 연구결과의 적용성을 검증하기 위해 국내에서 최근 완공된 비정형 건축프로젝트의 사례연구를 수행한다.

에너지절약을 고려한 공동주택의 발코니 계획에 관한 연구 (A Study on the Design of Balcony in the Apartment House Focusing on the Energy Saving)

  • 박해경;김성화;홍성애;권소현;최무혁
    • 한국주거학회논문집
    • /
    • 제10권1호
    • /
    • pp.63-73
    • /
    • 1999
  • The purpose of this study is to provide new design techniques for designers to design energy saving balcony in the apartment house using solar energy passively. These design techniques are examined with some samples of foreign buildings used solar energy passively. To classify these design techniques, this study sorts out the energy saving design elements from the preliminary studies. The results of this study show how to apply each design technique to the design of balcony in the apartment house and present a classification table of these techniques. Finally, this study suggests a design solution which can be applied in the design of balcony in existing apartment house.

  • PDF

Development of analytical modeling for an energy-dissipating cladding panel

  • Maneetes, H.;Memari, A.M.
    • Structural Engineering and Mechanics
    • /
    • 제32권5호
    • /
    • pp.587-608
    • /
    • 2009
  • Modern earthquake-resistant design aims to isolate architectural precast concrete panels from the structural system so as to reduce the interaction with the supporting structure and hence minimize damage. The present study seeks to maximize the cladding-structure interaction by developing an energy-dissipating cladding system (EDCS) that is capable of functioning both as a structural brace, as well as a source of energy dissipation. The EDCS is designed to provide added stiffness and damping to buildings with steel moment resisting frames with the goal of favorably modifying the building response to earthquake-induced forces without demanding any inelastic action and ductility from the basic lateral force resisting system. Because many modern building facades typically have continuous and large openings on top of the precast cladding panels at each floor level for window system, the present study focuses on spandrel type precast concrete cladding panel. The preliminary design of the EDCS was based on existing guidelines and research data on architectural precast concrete cladding and supplemental energy dissipation devices. For the component-level study, the preliminary design was validated and further refined based on the results of nonlinear finite element analyses. The stiffness and strength characteristics of the EDCS were established from a series of nonlinear finite element analyses and are discussed in detail in this paper.

초고층 외벽 유지관리용 Guide Rail 설치에 따른 커튼월 공사비 증가요인 분석 (Analysis of Factors Increasing Construction Cost for the Curtain-wall Accompanied by the Installation of a Guide Rail for High-rise Building Maintenance)

  • 김창한;한재구;김균태
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2011년도 춘계 학술논문 발표대회 2부
    • /
    • pp.97-98
    • /
    • 2011
  • The number of high-rise buildings has increased year after year, with there currently being 5 projects in progress to construct buildings higher than 100 stories in Seoul alone. The construction cost for such high-rise buildings is significantly higher than the cost for a conventional low-rise building, while maintenance costs are expected to be two to three times higher. To reduce the maintenance cost of a high-rise building, there is the need for a guide rail to be used for maintenance, which is why there is the need for research on the guide rail system. For this reason, as preliminary research to develop a guide rail, this study aims to derive the factors increasing construction cost by taking the installation of a guide rail into account. This is expected to lay the groundwork for the design and construction of guide rails for high-rise building maintenance.

  • PDF

연속붕괴가 방지된 초고층 복합빌딩시스템의 예비설계 (A Preliminary Design for Hybrid Building System with Progressive Collapse Prevention Means)

  • 최기봉;조태준;김성수;이진용
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제19권3호
    • /
    • pp.48-54
    • /
    • 2015
  • 본 연구에서는 수평변위와 횡력의 저감을 위해서 빌딩외부의 빌딩간 변형차이와 단면2차 모멘트의 최대화를 이용하여 다수의 빌딩으로 구성된 빌딩시스템의 빌딩간 협업제어 방식의 횡력분배 및 변위감소를 제안하였다. 제안된 복합빌딩 시스템의 안전설계를 위한 방안으로 케이블 파단시의 연속붕괴방지를 위한 연결부 정착판의 추가배치와 대공간구조 자체의 질량과 강성 및 공간을 활용한 동조질량감쇠장치의 설계에 대하여 제안하였다. 도심지 인구집중과 지가상승의 필연적 결과에 대한 해결방안으로 제안된 초고밀도 복합빌딩 시스템의 설계 최적화를 위하여, 3차원 빌딩구조시스템의 2축 대칭조건과 경계조건을 이용하여 2차원 모델을 구성하고 1차부정정구조를 이루는 2차원 모델의 중요설계변수를 검토하였다. 제안된 복합빌딩구조 시스템은 인구밀도와 지가가 상승하는 도심내 최대밀도구역에서 토지이용의 효율성을 극대화시키고, 새로운 빌딩 또는 기존빌딩구조의 안전성을 증대할 것으로 기대한다.

MOVEMENT CONTROL OF HIGH-RISE BUILDINGS DURING CONSTRUCTION

  • Taehun Ha;Sungho Lee;Bohwan Oh
    • 국제학술발표논문집
    • /
    • The 4th International Conference on Construction Engineering and Project Management Organized by the University of New South Wales
    • /
    • pp.46-51
    • /
    • 2011
  • High-rise buildings are widely being constructed in the Middle-East, South-East, and East Asia. These buildings are usually willing to stand for the landmark of the region and, therefore, exhibit some extraordinary features such as super-tall height, elevation set-backs, overhangs, or free-form exterior surface, all of which makes the construction difficult, complex, and even unsafe at some construction stages. In addition to the elaborately planned construction sequence, prediction and monitoring of building's movement during construction and after completion are required for precise and safe construction. This is often called the Building Movement Control during construction. This study describes Building Movement Control of the KLCC Tower, a 58-story office building currently being built right next to the famous PETRONAS Twin Towers. The main items of the Building Movement Control for the KLCC Tower are axial shortening and verticality. Preliminary prediction of these items are already carried out by the structural design team but more accurate prediction based on construction stage analysis and combined with time-dependent material testing, field monitoring, and site survey is done by the main contractor. As of September 2010, the Tower is under construction at level 30, where the plan abruptly changes from rectangle to triangle. Findings and troubleshooting until the current construction stage are explained in detail and implementations are suggested for future applications.

  • PDF