• Title/Summary/Keyword: prefabricated building

Search Result 81, Processing Time 0.022 seconds

Evaluation of Sound Insulation Performance of Extruded Cement Panel with a-Hemihydrate Gypsum

  • Kim, Jin-Man;Choi, Duck-Jin
    • Journal of the Korea Institute of Building Construction
    • /
    • v.12 no.6
    • /
    • pp.575-585
    • /
    • 2012
  • The extruded cement panel, which has many advantages as a prefabricated method, has been limited in its application due to its low fire-resistance. However, an extruded cement panel produced by mixing a-hemihydrate gypsum offers dramatically improved fire-resistance and is expected to have wide-ranging applications in the construction sector as an interior material or partition wall between housing units. Sound insulation performance is very important for the partition wall between housing units. In this study, the sound insulation performance of the extruded cement panel produced through the mixture of a-hemihydrate gypsum is reviewed in order to determine its usability for a partition wall between housing units and for interior materials. Through the review it was found that the wall formed using the extruded cement panels produced by mixing the a-hemihydrate gypsum have ★★★ class in sound insulation test, equal or superior compared with the other two types of extruded cement panel walls currently available in the market.

The Improvement Plan of Design Process by Case Study of Steel Structural Work (철골공사 현장조사를 통한 설계프로세스 개선방안)

  • 방성원;오승준;김진호;임남기
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2003.05a
    • /
    • pp.121-126
    • /
    • 2003
  • Steel frame construction is divided into subsidiary materials with column, beam, girder and bracing. After these are processed in factory for using installing in construction field. These prefabricated furniture is very important in accordance with design drawing about processing and prefabricating. In the case of design process using information transmission in blueprint, omission of material number, processing measure and finishing material, or discordance of each structure drawing and selecting incongruent structural material generated an error in the process of design. These error caused delaying tine and increasing cost and increasing safety accident in the steel-structure work operating process. therefore, design process should consider problem of operating process.

  • PDF

Field Investigation Study of WWF Placing for the Apartment Building Construction (구조용 용접철망을 적용한 아파트 구조물의 시공성에 관한 연구)

  • 안경수;김상연;윤영호;양지수;이리형
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.04a
    • /
    • pp.657-662
    • /
    • 1997
  • In these day, there have been shortage of construction workers and an increase of labor cost in our county. In order to overcome these problems, prefabricated and mechanized system of bar placing have been used in the construction fields. As a part of this tendency, welded wire fabric(WWF) reinforcement were studied several years ago. In this study, the required working hour. the labor power and the construction process of WWF reinforcement for the apartment building slabs are reported. From the result of field investigations, it is showed that the WWF reinforcement facilitates the field placing and the working time of WWF placing is saved, and then the labor cost of WWF reinforcement is less than that of the conventional bar reinforcement.

  • PDF

The Improvement Plan of Design Process by Case Study of Steel Structural Work (현장조사를 통한 철골공사 설계프로세스 개선방안)

  • Bang, Sung-Won;Kim, Jin-Ho;Lim, Nam-Gi
    • Journal of the Korea Institute of Building Construction
    • /
    • v.3 no.2
    • /
    • pp.111-118
    • /
    • 2003
  • Steel frame construction is divided into subsidiary materials with column, beam, girder and bracing. After these are processed in factory for using installing in construction field. These prefabricated furniture is very important in accordance with design drawing about processing and prefabricating. In the case of design process using information transmission in blueprint, omission of material number, processing measure and finishing material, or discordance of each structure drawing and selecting incongruent structural material generated an error in the process of design. These error caused delaying time and increasing cost and increasing safety accident in the steel-structure work operating process. therefore, design process should consider problem of operating process.

Disaster Prevention Technology in Response to Flooded Areas Using Drone Image-Based Inundation Monitoring and Prefabricated Rainwater Penetration Storage Block Structure (드론영상 기반 침수 모니터링 및 조립식 빗물 침투 저류블록 구조를 활용한 상습 침수지역 대응 방재기술)

  • Choi, Hee-Yong;Choi, Hyeong-Gil;Ryu, Jung-Rim;Kim, Won-Chang;Lee, Tae-Gyu
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.05a
    • /
    • pp.411-412
    • /
    • 2023
  • The purpose of this research and development is to develop a structure module that improves the efficiency and constructability of the layout structure as well as the design development of rainwater permeable storage tank blocks using inorganic binders and aggregates with the aim of reducing greenhouse gas (CO2) with eco-friendly materials. In addition, for the efficient response to flooding of the developed permeable storage structure, we present a technical solution for combining drone mapping technology and flood monitoring technology that can analyze topographical factors in detail.

  • PDF

A Study on the Expression of Movement in Architectural Design in the first Machine Age (제1기계시대 건축디자인에서의 운동의 표현에 관한 연구)

  • Kim Won-Gaff
    • Korean Institute of Interior Design Journal
    • /
    • v.14 no.1
    • /
    • pp.28-36
    • /
    • 2005
  • The theme of modern architecture was various expression of dynamism and the flow of space. It was because that the space become the main theme of architecture since the late 19th century, and the space was changed from the 3rd dimension into the 4th dimensional space-time continuum. Though many avant-garde artists in the early 20th century did not understand the theory of relativity, they became conscious of the concept of space-time continuum, and tried to express the movement as the duration in time which Bergson defined. Many architects in the first machine age conceived the movement of architecture, and understand it as the dynamism of the mass and in the space. But especially, Sant'Elia and Hilberseimer expressed it as the flow of various force and vector In the metropolis as entire system. And Some architects conceived it as real movement of the building and expressed it as the rotary motion of building, movable partition and furniture, mobile prefabricated building. This study analyzed the expression of movement in architecture in the first machine age.

Lateral-resisting Structural Systems for Tall Modular Buildings (모듈러 건축물의 수평력 저항 구조시스템)

  • Lee, Chang-Hwan;Chung, Kwang-Ryang
    • Journal of Korean Association for Spatial Structures
    • /
    • v.16 no.2
    • /
    • pp.79-88
    • /
    • 2016
  • Modular buildings are constructed by assembling modular units which are prefabricated in a factory and delivered to the site. However, due to a problem of noise between floors, concrete slab is usually poured at the top or bottom level of a modular unit in Korea. This greatly increases the weight of buildings, but designing vertical members of modular units to resist overall gravity loads is very inefficient. In this study, considering domestic building construction practices, feasible structural systems for tall modular buildings are proposed in which separate steel frames and reinforced concrete core walls are designed to resist gravity and lateral loads. To verify performance, a three-dimensional structural analysis has been performed with two types of prototype buildings, i.e., a residential building and a hotel. From the results, wind-induced lateral displacements and seismic story drifts are examined and compared with their limit values. Between the two kinds of buildings, the efficiency of the proposed system is also evaluated through a comparison of the weight of structural components. Finally, the effect of a floor diaphragm on the overall behavior is analyzed and discussed.

A study on rotational behaviour of a new industrialised building system connection

  • Moghadasi, Mostafa;Marsono, Abdul Kadir;Mohammadyan-Yasouj, Seyed Esmaeil
    • Steel and Composite Structures
    • /
    • v.25 no.2
    • /
    • pp.245-255
    • /
    • 2017
  • The performance of an Industrialised Building System (IBS) consists of prefabricated reinforced concrete components, is greatly affected by the behaviour of the connection between beam and columns. The structural characteristics parameters of a beam-to-column connection like rotational stiffness, strength and ductility can be explained by load-rotation relationship of a full scale H-subframe under gravitational load. Furthermore, the connection's degree of rigidity directly influences the behaviour of the whole frame. In this research, rotational behaviour of a patented innovative beam-to-column connection with unique benefits like easy installation, no wet work, no welding work at assembly site, using a hybrid behaviour of steel and concrete, easy replacement ability, and compatibility with architecture was investigated. The proposed IBS beam-to-column connection includes precast concrete components with embedded steel end connectors. Two full-scale H-subframes constructed with a new IBS and conventional cast in-situ reinforced concrete system beam-to-column connections were tested under incremental static loading. In this paper, load-rotation relationship and ratio of the rigidity of IBS beam-to-column connection are studied and compared with conventional monolithic reinforced concrete connection. It is concluded that this new IBS beam-to-column connection benefits from more rotational ductility than the conventional reinforced concrete connection. Furthermore, the semi-rigid IBS connection rigidity ratio is about 44% of a full rigid connection.

3D Printing in Modular Construction: Opportunities and Challenges

  • Li, Mingkai;Li, Dezhi;Zhang, Jiansong;Cheng, Jack C.P.;Gan, Vincent J.L.
    • International conference on construction engineering and project management
    • /
    • 2020.12a
    • /
    • pp.75-84
    • /
    • 2020
  • Modular construction is a construction method whereby prefabricated volumetric units are produced in a factory and are installed on site to form a building block. The construction productivity can be substantially improved by the manufacturing and assembly of standardized modular units. 3D printing is a computer-controlled fabrication method first adopted in the manufacturing industry and was utilized for the automated construction of small-scale houses in recent years. Implementing 3D printing in the fabrication of modular units brings huge benefits to modular construction, including increased customization, lower material waste, and reduced labor work. Such implementation also benefits the large-scale and wider adoption of 3D printing in engineering practice. However, a critical issue for 3D printed modules is the loading capacity, particularly in response to horizontal forces like wind load, which requires a deeper understanding of the building structure behavior and the design of load-bearing modules. Therefore, this paper presents the state-of-the-art literature concerning recent achievement in 3D printing for buildings, followed by discussion on the opportunities and challenges for examining 3D printing in modular construction. Promising 3D printing techniques are critically reviewed and discussed with regard to their advantages and limitations in construction. The appropriate structural form needs to be determined at the design stage, taking into consideration the overall building structural behavior, site environmental conditions (e.g., wind), and load-carrying capacity of the 3D printed modules. Detailed finite element modelling of the entire modular buildings needs to be conducted to verify the structural performance, considering the code-stipulated lateral drift, strength criteria, and other design requirements. Moreover, integration of building information modelling (BIM) method is beneficial for generating the material and geometric details of the 3D printed modules, which can then be utilized for the fabrication.

  • PDF

The Development of Fixing Equipment of the Unit Module Using the Probability Distribution of Transporting Load (운반하중의 확률분포를 활용한 유닛모듈 운반용 고정장치 개발)

  • Park, Nam-Cheon;Kim, Seok;Kim, Kyoon-Tai
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.6
    • /
    • pp.4267-4275
    • /
    • 2015
  • Prefabricated houses are fabricated at the factory for approximately 60 to 80% of the entire construction process, and assembled in the field. In the process of transporting and lifting, internal and external finishes of the unit module are concerned about damages. The purpose of this study is to improve the fixing equipment by analyzing load behavior. The improved fixing equipment would minimize the deformation of internal and external finishes. In order to develop the improved fixing equipment, transporting load on the fixing equipment is analyzed using Monte Carlo simulations, and structural performance is verified by the non-linear finite element analysis. Statistical analysis shows load distribution of unit module is similar with extreme value distribution. Based on the statistical analysis and Monte Carlo simulation, the maximum transporting load is 28.9kN and 95% confidence interval of transporting load is -1.22kN to 9.5kN. The nonlinear structural analysis shows improved fixing equipment is not destructed to the limit load of 35.3kN and withstands the load-bearing in the 95% confidence interval of transporting load.