Journal of the Korean Society for Advanced Composite Structures
/
v.5
no.4
/
pp.1-10
/
2014
A progressive failure analysis procedure for composite laminates is developed in here and in the companion paper. An anisotropic plastic constitutive model for fiber-reinforced composite material, is developed, which is simple and efficient to be implemented into computer program for a predictive analysis procedure of composites. In current development of the constitutive model, an incremental elastic-plastic constitutive model is adopted to represent progressively the nonlinear material behavior of composite materials until a material failure is predicted. An anisotropic initial yield criterion is established that includes the effects of different yield strengths in each material direction, and between tension and compression. Anisotropic work-hardening model and subsequent yield surface are developed to describe material behavior beyond the initial yield under the general loading condition. The current model is implemented into a computer code, which is Predictive Analysis for Composite Structures (PACS), and is presented in the companion paper. The accuracy and efficiency of the anisotropic plastic constitutive model are verified by solving a number of various fiber-reinforced composite laminates with and without geometric discontinuity. The comparisons of the numerical results to the experimental and other numerical results available in the literature indicate the validity and efficiency of the developed model.
This paper proposes a numerical approach to predict the critical flashover voltages of air gaps under lightning impulses. For an air gap, the impulse voltage waveform features and electric field features are defined to characterize its energy storage status before the initiation of breakdown. These features are taken as the input parameters of the predictive model established by support vector machine (SVM). Given an applied voltage range, the golden section search method is used to compute the prediction results efficiently. This method was applied to predict the critical flashover voltages of rod-rod, rod-plane and sphere-plane gaps over a wide range of gap lengths and impulse voltage waveshapes. The predicted results coincide well with the experimental data, with the same trends and acceptable errors. The mean absolute percentage errors of 6 groups of test samples are within 4.6%, which demonstrates the validity and accuracy of the predictive model. This method provides an effectual way to obtain the critical flashover voltage and might be helpful to estimate the safe clearances of air gaps for insulation design.
Park, Joon Young;Sin, Jiook;Bak, Yeongsu;Park, Sung-Min;Lee, Kyo-Beum
Journal of Electrical Engineering and Technology
/
v.13
no.3
/
pp.1212-1222
/
2018
This paper presents a model predictive control (MPC) method to reduce the common-mode voltage (CMV) for inverters connected in parallel, which increase the capacity of energy storage systems (ESSs). The proposed method is based on subdivided voltage vectors, and the resulting algorithm can be applied to control the inverters. Furthermore, we use more voltage vectors than the conventional MPC algorithm; consequently, the quality of grid currents is improved. Several methods were proposed in order to reduce the CMV appearing during operation and its adverse effects. However, those methods have shown to increase the total harmonic distortion of the grid currents. Our method, however, aims to both avoid this drawback and effectively reduce the CMV. By employing phase difference in the carrier signals to control each inverter, we successfully reduced the CMV for inverters connected in parallel, thus outperforming similar methods. In fact, the validity of the proposed method was verified by simulations and experimental results.
Uncertain time delay happens when the process reads the sensor data and sends the control input to the plant located at a remote site in distributed control system. As in the case of data network using TCP/IP, VDN that integrates both device network and data network has uncertain time delay. Uncertain time delay can cause degradation in performance and stability of distributed control system based on VDN. This paper first investigates the transmission characteristic of VDN and suggests a control scheme based on the Smith's predictor to minimize the effect of uncertain varying time delay. The validity of the proposed control scheme is demonstrated with real-time velocity control of DC servo motor located in remote site.
Recently, the rapid development of artificial intelligence technology, many studies are being conducted to predict the risk of heart disease in order to lower the mortality rate of cardiovascular diseases worldwide. This study presents exercise or dietary improvement contents in the form of a software app or web to patients with cardiovascular disease, and cardiovascular disease through digital devices such as mobile phones and PCs. LR, LDA, SVM, XGBoost for the purpose of developing "Life style Improvement Contents (Digital Therapy)" for cardiovascular disease care to help with management or treatment We compared and analyzed cardiovascular disease prediction models using machine learning algorithms. Research Results XGBoost. The algorithm model showed the best predictive model performance with overall accuracy of 80% before and after. Overall, accuracy was 80.0%, F1 Score was 0.77~0.79, and ROC-AUC was 80%~84%, resulting in predictive model performance. Therefore, it was found that the algorithm used in this study can be used as a reference model necessary to verify the validity and accuracy of cardiovascular disease prediction. A cardiovascular disease prediction analysis algorithm that can enter accurate biometric data collected in future clinical trials, add lifestyle management (exercise, eating habits, etc.) elements, and verify the effect and efficacy on cardiovascular-related bio-signals and disease risk. development, ultimately suggesting that it is possible to develop lifestyle improvement contents (Digital Therapy).
The purpose of this study is to develop a multi-dimensional scale measuring consumers' perceived challenge in shopping fashion products online, and to verify its validity and reliability. Relevant literature is first reviewed to identify possible dimensions of perceived challenge. Next, Study 1 is conducted in order to explore the dimensions empirically and to see whether the dimensions that emerged were consistent with prior findings. A total of 190 responses to an open-ended question was qualitatively analyzed by using content analysis. The findings of Study 1 generate 26 items reflecting four dimensions (i.e., product knowledge, previous experience, website functionality, and product availability), which correspond to the dimensions suggested in literature review. Study 2 is subsequently conducted to refine the items so that the perceived challenge scale establishes cross-validation, convergent validity, discriminant validity, reliability, and predictive validity. A total of 238 responses is quantitatively analyzed by using exploratory factor analysis, confirmatory factor analysis, and structural equation modeling. In the results of Study 2, the perceived challenge scale is found to consist of a total of 16 items reflecting three dimensions: E-commerce Challenge (corresponding to Previous Experience reported in Study 1), Retailer Challenge (corresponding to Website Functionality), and Product Challenge (corresponding to Product Knowledge); all Product Availability items have been eliminated through the item refinement process. Specifically, E-commerce Challenge and Retailer Challenge are found to predict flow, supporting flow theory, while Product Challenge fails to lead to flow significantly. Implications, limitations, and suggestions for future studies are also discussed.
This study have researched on feasibility of bioelectrical impedance analysis (BIA, which is simple useful evaluation tool for predictive factor of cardiovascular disease) to patients who have to travel along the sea for a long-period time and have difficulty in visiting medical institutions. We studied on the basis of total cholesterol value, which is nowadays widely used tool for predictive factor of cardiovascular disease, and also studied its association with BIA value via statistical analysis. Our result showed correlation with fat thickness of individual sites, and especially, fat thickness of left thigh showed high relation with total cholesterol value. This result shows that people who are in travel of long-period of time at sea are feasible of using BIA to evaluate changes of left thigh fat thickness as predictive factor for cardiovascular disease. Due to lack of advanced researches further studies should be done. And based on special circumstances in sea, more studies should be done to validity concerning this circumstances and accuracy of this evaluation tool.
Journal of the Korea Institute of Information and Communication Engineering
/
v.21
no.10
/
pp.1879-1885
/
2017
This paper discusses the trajectory tracking system of unmanned ground vehicles based on predictive control. Because the unmanned ground vehicles can not satisfactorily complete the path tracking task, highly efficient and stable trajectory control system is necessary for unmanned ground vehicle to be realized intelligent and practical. According to the characteristics of unmanned vehicle, this paper built the kinematics tracking models firstly. Then studied algorithm solution with the tools of the optimal stability analysis method and proposed a tracking control method based on the model predictive control. The controller used a kinematics-based prediction model to calculate the predictive error. This controller helps the unmanned vehicle drive along the target trajectory quickly and accurately. The designed control strategy has the true robustness, simplicity as well as generality for kinematics model of the unmanned vehicle. Furthermore, the computer Simulink/Carsim results verified the validity of the proposed control method.
Objectives: In this study, we examined the validity of Clostridium difficile culture results as a proxy measure of Clostridium difficile infection, and inferred the epidemiologic characteristics of Clostridium difficile infection by tracking the trends of Clostridium difficile culture results. Methods: We reviewed the medical records to figure out the actual possibilities of Clostridium difficile infection of those with positive or negative results of Clostridium difficile culture during the time span from January 2012 to March 2012. We calculated the positive and negative predictive value of Clostridium difficile culture results for Clostridium difficile infection. Furthermore, epidemiologic characteristics of Clostridium difficile infection in a tertiary general hospital in 2012 were analyzed. Result: The estimated positive predictive value of Clostridium difficile culture tests for Clostridium difficile infection was 100%, and the estimated negative predictive value was around 94.4~99.3% depending on the cutoff value of possibility of Clostridium difficile infection. A total of 622 cases were identified as Clostridium difficile infection in a tertiary general hospital in 2012 and there were 4.9 patients with Clostridium difficile infection per 1,000 inpatients. Conclusion: In conclusion, we identified that Clostridium difficile culture results can be used as a proxy measure of Clostridium difficile infection.
Purpose Various machine learning techniques are used to implement for predicting corporate credit. However, previous research doesn't utilize time series input features and has a limited prediction timing. Furthermore, in the case of corporate bond credit rating forecast, corporate sample is limited because only large companies are selected for corporate bond credit rating. To address limitations of prior research, this study attempts to implement a predictive model with more sample companies, which can adjust the forecasting point at the present time by using the credit score information and corporate information in time series. Design/methodology/approach To implement this forecasting model, this study uses the sample of 2,191 companies with KIS credit scores for 18 years from 2000 to 2017. For improving the performance of the predictive model, various financial and non-financial features are applied as input variables in a time series through a sliding window technique. In addition, this research also tests various machine learning techniques that were traditionally used to increase the validity of analysis results, and the deep learning technique that is being actively researched of late. Findings RNN-based stateful LSTM model shows good performance in credit rating prediction. By extending the forecasting time point, we find how the performance of the predictive model changes over time and evaluate the feature groups in the short and long terms. In comparison with other studies, the results of 5 classification prediction through label reclassification show good performance relatively. In addition, about 90% accuracy is found in the bad credit forecasts.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.