Acknowledgement
This paper was supported by IITP (Institute of information & Communications Technology Planning & Evaluation(www.iitp.kr), Korea) [Project Number: 2022-0-00317]. This paper was supported by the research grant of the KODISA scholarship foundation in 2023.
References
- Beak, S. K., Park, J. H., Kang, S. H., & Park, H. J. (2018). A study on the development of severity-adjusted mortality prediction model for discharged patient with acute stroke using machine learning. Journal of Korea Academia-Industrial cooperation Society, 19(11), 126-136. https://doi.org/10.5762/KAIS.2018.19.11.126
- Bosma, H., Peter, R., Siegrist, J., & Marmot, M. (1998). Two alternative job stress models and the risk of coronary heart disease. American Journal of Public Health, 88(1), 68-74. https://doi.org/10.2105/AJPH.88.1.68
- Choi, B. G., Rha, S. W., Kim, S. W., Kang, J. H., Park, J. Y., & Noh, Y. K. (2019). Machine Learning for the Prediction of New-Onset Diabetes Mellitus during 5-Year Follow-up in Non-Diabetic Patients with Cardiovascular Risk. Yonsei Med J, 60(2), 191-199. http://doi.org/10.3349/ymj.2019.60.2.191
- Cho, S. O., (2019). Change Pattern of Heart Age in Korean Population Using Heart Age Predictor of Framingham Heart Study. Journal of the Korea Academia-Industrial cooperation Society, 20(8), 331-343. https://doi.org/10.5762/KAIS.2019.20.8.331
- Hong, S. M., Byeon, H. W., Kim, J. S., & Mun, S. H. (2015). Development of Risk Prediction Model for Cardiovascular Disease Among Community-Dwelling Elderly. Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology, 5(1), 37-46. http://doi.org/10.14257/AJMAHS.2015.02.02
- Hyun, J. K. (2022). Prediction of Diabetic Neuropathy Using Machine Learning Techniques. J Korean Diabetes, 23(4), 238-244. https://doi.org/10.4093/jkd.2022.23.4.238
- Jee, S. H., Song, J. W., Cho, H. L., Kim, S. Y., Jang, Y. S., & Kim, J. H. (2004). Development of Individualized Health Risk Appraisal Model of Ischemic Heart Disease Risk in Korea, Journal of Lipid and Atherosclerosis, 14(2), 153-168.
- Kang, S. A., Kim, S. H., & Ryu, M. H. (2022). Analysis of Hypertension Risk Factors by Life Cycle Based on Machine Learning. Journal of the Korea Industrial Information Systems Research, 27(5), 73-82. https://doi.org/10.9723/jksiis.2022.27.5.073
- Kim, C. J., & Kim, J. S. (2018). A Study of Heart Disease Prediction Using Multilayer Perceptron based on Deep Learning. Journal of Knowledge Information Technology and Systems(JKITS), 14(4), 411-419 https://doi.org/10.34163/jkits.2018.13.4.001
- Kim, S. H., & Cho, S. H. (2023). A Comparative Study of Predictive Factors for Hypertension using Logistic Regression Analysis and Decision Tree Analysis. Phys Ther Rehabil Sci, 12(2), 80-91. https://doi.org/10.14474/ptrs.2023.12.2.80
- Kipp, W. J., Soto, J. T., Glicksberg, B. S., Shameer, K., Miotto, R. Ali, M., & Joe. T. Dudley. (2018). Artificial Intelligence in Cardiology. Journal of the American College of Cardiology(JACC), 71(23), 2668-2679. https://doi.org/10.1016/j.jacc.2018.03.521
- Lee, Y. N., Lee, K. H., & Cho, W. S. (2021). Cost-Sensitive Learning for Cardio-Cerebrovascular Disease Risk Prediction. The Korea Journal of BigData, 6(2), 161-168. https://doi.org/10.36498/kbigdt.2021.6.2.161
- Mohd Faizal, A.S., Thevarajah, T. M., Khor, S. M., & Chang, S. W. (2021). A review of risk prediction models in cardiovascular disease, conventional approach vs. artificial intelligent approach. Computer methods and Programs in Biomedicine, 207, 1-11. https://doi.org/10.1016/j.cmpb.2021.106190
- Motwani, M., Dey D., Berman., Germano G., Achenbach S., & Al-Mallah M.H., Andreini, D., Budoff, M. J., et al. (2017). Machine learning for prediction of all-cause mortality in patients with suspected coronary artery disease: a 5-year multicentre prospective registry analysis. European Heart Journal, 38, 500-507. http://doi.org/10.1093/eurheartj/ehw188
- Noh, M. J., & Park, S. C. (2020). A Prediction Model of Asthma Diseases in Teenagers Using Artificial Intelligence Models. J. Inf. Technol. Appl. Manag., 27(6), 171-180. http://doi.org/10.21219/jitam.2020.27.6.171
- Oh, T. S., Kim, D. K., Won, C. W., Kim, S. Y., Jeong, E. J., Yang, J. S., Yu, J. H., Kim, B. S., & Lee, J. H. (2022). A Machine-Learning-Based Risk Factor Analysis for Hypertension; Korea National Health and Nutrition Examination Survey 20016-2019. Korean j Fam Practice, 12(3),173-178. http://doi.org/10.21215/kifp.2022.12.3.17.3
- Park, D. W. (2023). Analysis of the Application Target and Scope of Artificial Intelligence Algorithm for the Development of 4th and 5th Industrial Revolution Technologies. The Journal of Korean Institute of Communications and Information Sciences, 48(1), 65-73. http://doi.org/10.7840/kics.2023.48.1.65
- Park, P. W., Kim, M. K., Lim, H. S., Yoon, D. Y., & Lee, S. W. (2014). A Comparative Study of Machine Learning Algorithms for Diagnosis of Ischemic Heart Disease. Journal of KIISE, 45(4), 376-389. http://doi.org/10.5026/JOK.2018.45.4.376
- Urrea, B., Misra S., Plante, T. B., Kelli, H. M., Misra, S., Blaha. M. J., Martin S. S. (2015). Mobile Health Initiatives to Improve Outcomes in Primary Prevention of Cardiovascular Disease. Curr Treat Options Cardio Med, 17, 59. https://doi.org/10.1007/s11936-015-0417-7
- Venkatesh, B. A., Yang, X., Wu, C. O., Kiu, K., & Hundley, G., et.al. (2017). Cardiovascular Event Prediction by Machine Learning: The Multi-Ethnic Study of Atherosclerosis. Circ Res., 121(9), 1092-1101. https://doi.org/10.1161/CIRCRESAHA.117.311312