• Title/Summary/Keyword: predictive method

Search Result 1,555, Processing Time 0.037 seconds

Estimation of a Nationwide Statistics of Hernia Operation Applying Data Mining Technique to the National Health Insurance Database (데이터마이닝 기법을 이용한 건강보험공단의 수술 통계량 근사치 추정 -허니아 수술을 중심으로-)

  • Kang, Sung-Hong;Seo, Seok-Kyung;Yang, Yeong-Ja;Lee, Ae-Kyung;Bae, Jong-Myon
    • Journal of Preventive Medicine and Public Health
    • /
    • v.39 no.5
    • /
    • pp.433-437
    • /
    • 2006
  • Objectives: The aim of this study is to develop a methodology for estimating a nationwide statistic for hernia operations with using the claim database of the Korea Health Insurance Cooperation (KHIC). Methods: According to the insurance claim procedures, the claim database was divided into the electronic data interchange database (EDI_DB) and the sheet database (Paper_DB). Although the EDI_DB has operation and management codes showing the facts and kinds of operations, the Paper_DB doesn't. Using the hernia matched management code in the EDI_DB, the cases of hernia surgery were extracted. For drawing the potential cases from the Paper_DB, which doesn't have the code, the predictive model was developed using the data mining technique called SEMMA. The claim sheets of the cases that showed a predictive probability of an operation over the threshold, as was decided by the ROC curve, were identified in order to get the positive predictive value as an index of usefulness for the predictive model. Results: Of the claim databases in 2004, 14,386 cases had hernia related management codes with using the EDI system. For fitting the models with applying the data mining technique, logistic regression was chosen rather than the neural network method or the decision tree method. From the Paper_DB, 1,019 cases were extracted as potential cases. Direct review of the sheets of the extracted cases showed that the positive predictive value was 95.3%. Conclusions: The results suggested that applying the data mining technique to the claim database in the KHIC for estimating the nationwide surgical statistics would be useful from the aspect of execution and cost-effectiveness.

A Pressurized Water Reactor Power Controller Using Model Predictive Control Optimized by a Genetic Algorithm (유전자 알고리즘에 의해 최적화된 모델예측제어를 이용한 PWR 출력제어기)

  • Na, Man-Gyun;Hwang, In-Joon
    • Proceedings of the KIEE Conference
    • /
    • 2005.10b
    • /
    • pp.104-106
    • /
    • 2005
  • In this work, a PWR reactor core dynamics is identified online by a recursive least squares method. Based on this identified reactor model consisting of the control rod position and the core average coolant temperature, the future average coolant temperature is predicted. A model predictive control method is applied to design an automatic controller for thermal power control in PWRs. The basic concept of the model predictive control is to solve an optimization problem for a finite future at current time and to implement as the current control input only the first optimal control input among the solutions of the finite time steps. At the next time step, the procedure to solve the optimization problem is then repeated. The objectives of the proposed model predictive controller are to minimize both the difference between the predicted core coolant temperature and the desired one, and the variation of the control rod positions. Also, the objectives are subject to maximum and minimum control rod positions and maximum control rod speed. Therefore, the genetic algorithm that is appropriate to accomplish multiple objectives is used to optimize the model predictive controller. A 3-dimensional nuclear reactor analysis code, MASTER that was developed by Korea Atomic Energy Research Institute (KAERI), is used to verify the proposed controller for a nuclear reactor. From results of numerical simulation to check the performance of the proposed controller at the 5%/min ramp increase or decrease of a desired load and its 10% step increase or decrease which are design requirements, it was found that the nuclear power level controlled by the proposed controller could track the desired power level very well.

  • PDF

Estimation of Predictive Travel Times Using Ubiquitous Traffic Environment under Incident Conditions (유비쿼터스 환경에서 돌발상황 발생 시 예측적 통행시간 추정기법)

  • Park, Joon-Hyeong;Hong, Seung-Pyo;Oh, Cheol;Kim, Tae-Hyeong;Kim, Won-Kyu
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.8 no.2
    • /
    • pp.14-26
    • /
    • 2009
  • This study presented a novel method to estimate travel times under incident conditions. Predictive travel time information was defined and evaluated with the proposed method. The proposed method utilized individual vehicle speeds obtained from global positioning systems (GPS) and inter-vehicle communications(IVC) for more reliable real-time travel times. Individual vehicle trajectory data were extracted from microscopic traffic simulations using AIMSUN. Market penetration rates (MPR) and IVC ranges were explored with the accuracy of travel times. Relationship among travel time accuracy, IVC ranges, and MPR were further identified using regression analyses. The outcomes of this study would be useful to derive functional requirements associated with traffic information systems under forthcoming ubiquitous transportation environment

  • PDF

An Improved Predictive Functional Control with Minimum-Order Observer for Speed Control of Permanent Magnet Synchronous Motor

  • Wang, Shuang;Fu, Junyong;Yang, Ying;Shi, Jian
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.1
    • /
    • pp.272-283
    • /
    • 2017
  • In this paper, an improved predictive functional control (PFC) scheme for permanent magnet synchronous motor (PMSM) control system is proposed, on account of the standard PFC method cannot provides a satisfying disturbance rejection performance in the case of strong disturbances. The PFC-based method is first introduced in the control design of speed loop, since the good tracking and robustness properties of the PFC heavily depend on the accuracy of the internal model of the plant. However, in orthodox design of prediction model based control method, disturbances are not considered in the prediction model as well as the control design. A minimum-order observer (MOO) is introduced to estimate the disturbances, which structure is simple and can be realized at a low computational load. This paper adopted the MOO to observe the load torque, and the observations are then fed back into PFC model to rebuild it when considering the influence of perturbation. Therefore, an improved PFC strategy with torque compensation, called the PFC+MOO method, is presented. The validity of the proposed method was tested via simulation and experiments. Excellent results were obtained with respect to the speed trajectory tracking, stability, and disturbance rejection.

Space Vector Modulation based on Model Predictive Control to Reduce Current Ripples with Subdivided Space Voltage Vectors (전류 리플 저감을 위한 세분화된 공간전압벡터를 이용한 모델 예측 제어 기반의 SVM 방법)

  • Moon, Hyun-Cheol;Lee, June-Seok;Lee, June-Hee;Lee, Kyo-Beum
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.22 no.1
    • /
    • pp.18-26
    • /
    • 2017
  • This paper proposes the model predictive control with space vector modulation (SVM) method for current control of voltage-source inverter. Unlike the conventional method using a limited number of voltage vectors by switching states, the proposed method can consider various voltage vectors to identify the optimized voltage vector. The various voltage vectors are obtained by subdividing existing voltage vectors. The optimized voltage vector that minimizes the cost function is selected and applied to the inverter by using the SVM. The various voltage vectors and SVM reduce current ripples in the output AC side of the inverter compared with the conventional method. The effectiveness and performance of the proposed method are verified through simulation and experiment with a three-phase two-level voltage-source grid-connected inverter.

A Fast and Powerful Question-answering System using 2-pass Indexing and Rule-based Query Processing Method (2-패스 색인 기법과 규칙 기반 질의 처리기법을 이용한 고속, 고성능 질의 응답 시스템)

  • 김학수;서정연
    • Journal of KIISE:Software and Applications
    • /
    • v.29 no.11
    • /
    • pp.795-802
    • /
    • 2002
  • We propose a fast and powerful Question-answering (QA) system in Korean, which uses a predictive answer indexer based on 2-pass scoring method. The indexing process is as follows. The predictive answer indexer first extracts all answer candidates in a document. Then, using 2-pass scoring method, it gives scores to the adjacent content words that are closely related with each answer candidate. Next, it stores the weighted content words with each candidate into a database. Using this technique, along with a complementary analysis of questions which is based on lexico-syntactic pattern matching method, the proposed QA system saves response time and enhances the precision.

Optimal Zero Vector Selecting Method to Reduce Switching Loss on Model Predictive Control of VSI (전압원 인버터의 모델 예측 제어에서 스위칭 손실을 줄이기 위한 최적의 제로 벡터 선택 방법)

  • Park, Jun-Cheol;Park, Chan-Bae;Baek, Jei-Hoon;Kwak, Sang-Shin
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.20 no.3
    • /
    • pp.273-279
    • /
    • 2015
  • A zero vector selection method to reduce switching losses for model predictive control (MPC) of voltage source inverter is proposed. A conventional MPC of voltage source inverter has not been proposed, and a method to select the redundancy of the zero vector is required for this study. In this paper, the redundancy of the zero vectors is selected with generating a zero sequence voltage to reduce switching losses. The zero vector of 2-level inverter is determined by determining sign of the zero sequence voltage. In the proposed method, the quality of the current is retained and switching loss can be reduced compared with the conventional method. This result was verified by P-sim simulation and experiments.

Scheme to Improve the Line Current Distortion of PFC Using a Predictive Control Algorithm

  • Kim, Dae Joong;Park, Jin-Hyuk;Lee, Kyo-Beum
    • Journal of Power Electronics
    • /
    • v.15 no.5
    • /
    • pp.1168-1177
    • /
    • 2015
  • This paper presents a scheme to improve the line current distortion of power factor corrector (PFC) topology at the zero crossing point using a predictive control algorithm in both the continuous conduction mode (CCM) and discontinuous conduction mode (DCM). The line current in single-phase PFC topology is distorted at the zero crossing point of the input AC voltage because of the characteristic of the general proportional integral (PI) current controller. This distortion degrades the line current quality, such as the total harmonic distortion (THD) and the power factor (PF). Given the optimal duty cycle calculated by estimating the next state current in both the CCM and DCM, the proposed predictive control algorithm has a fast dynamic response and accuracy unlike the conventional PI current control method. These advantages of the proposed algorithm lower the line current distortion of PFC topology. The proposed method is verified through PSIM simulations and experimental results with 1.5 kW bridgeless PFC (BLPFC) topology.

Input Variable Decision of the Predictive Model for the Optimal Starting Moment of the Cooling System in Accommodations (숙박시설 냉방 시스템의 최적 작동 시점 예측 모델 개발을 위한 입력 변수 선정)

  • Baik, Yong Kyu;Yoon, Younju;Moon, Jin Woo
    • KIEAE Journal
    • /
    • v.15 no.4
    • /
    • pp.105-110
    • /
    • 2015
  • Purpose: This study aimed at finding the optimal input variables of the artificial neural network-based predictive model for the optimal controls of the indoor temperature environment. By applying the optimal input variables to the predictive model, the required time for restoring the current indoor temperature during the setback period to the normal setpoint temperature can be more precisely calculated for the cooling season. The precise prediction results will support the advanced operation of the cooling system to condition the indoor temperature comfortably in a more energy-efficient manner. Method: Two major steps employing the numerical computer simulation method were conducted for developing an ANN model and finding the optimal input variables. In the first process, the initial ANN model was intuitively determined to have input neurons that seemed to have a relationship with the output neuron. The second process was conducted for finding the statistical relationship between the initial input variables and output variable. Result: Based on the statistical analysis, the optimal input variables were determined.

MODEL PREDICTIVE CONTROL OF NONLINEAR PROCESSES BY USE OF 2ND AND 3RD VOLTERRA KERNEL MODEL

  • Kashiwagi, H.;Rong, L.;Harada, H.;Yamaguchi, T.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1998.10a
    • /
    • pp.451-454
    • /
    • 1998
  • This paper proposes a new method of Model Predictive Control (MPC) of nonlinear process by us-ing the measured Volterra kernels as the nonlinear model. A nonlinear dynamical process is usually de-scribed as Volterra kernel representation, In the authors' method, a pseudo-random M-sequence is ar plied to the nonlinear process, and its output is measured. Taking the crosscorrelation between the input and output, we obtain the Volterra kernels up to 3rd order which represent the nonlinear characteristics of the process. By using the measured Volterra kernels, we can construct the nonlinear model for MPC. In applying Model Predictive Control to a nonlinear process, the most important thing is, in general, what kind of nonlinear model should be used. The authors used the measured Volterra kernels of up to 3rd order as the process model. The authors have carried out computer simulations and compared the simulation results for the linear model, the nonlinear model up to 2nd Volterra kernel, and the nonlinear model up to 3rd order Vol-terra kernel. The results of computer simulation show that the use of Valterra kernels of up to 3rd order is most effective for Model Predictive Control of nonlinear dynamical processes.

  • PDF