DOI QR코드

DOI QR Code

An Improved Predictive Functional Control with Minimum-Order Observer for Speed Control of Permanent Magnet Synchronous Motor

  • Wang, Shuang (School of Mechatronic Engineering and Automation, Shanghai University) ;
  • Fu, Junyong (School of Mechatronic Engineering and Automation, Shanghai University) ;
  • Yang, Ying (School of Mechatronic Engineering and Automation, Shanghai University) ;
  • Shi, Jian (School of Mechatronic Engineering and Automation, Shanghai University)
  • Received : 2016.06.06
  • Accepted : 2016.10.11
  • Published : 2017.01.02

Abstract

In this paper, an improved predictive functional control (PFC) scheme for permanent magnet synchronous motor (PMSM) control system is proposed, on account of the standard PFC method cannot provides a satisfying disturbance rejection performance in the case of strong disturbances. The PFC-based method is first introduced in the control design of speed loop, since the good tracking and robustness properties of the PFC heavily depend on the accuracy of the internal model of the plant. However, in orthodox design of prediction model based control method, disturbances are not considered in the prediction model as well as the control design. A minimum-order observer (MOO) is introduced to estimate the disturbances, which structure is simple and can be realized at a low computational load. This paper adopted the MOO to observe the load torque, and the observations are then fed back into PFC model to rebuild it when considering the influence of perturbation. Therefore, an improved PFC strategy with torque compensation, called the PFC+MOO method, is presented. The validity of the proposed method was tested via simulation and experiments. Excellent results were obtained with respect to the speed trajectory tracking, stability, and disturbance rejection.

Keywords

References

  1. Line, C., Manzie, C., Good, M.C.: 'Electromechanical brake modeling and control: From PI to MPC', IEEE Trans. Control Syst. Technol., 2008, 16, (3), pp. 446-457. https://doi.org/10.1109/TCST.2007.908200
  2. Xia, C.L., Ji, B.N., Yan, Y.: 'Smooth speed control for low-speed high-torque permanent-magnet synchronous motor using proportional-integral-resonant controllers', IEEE Trans. Ind. Electron., 2015, 62, (4), pp. 2123-2134. https://doi.org/10.1109/TIE.2014.2354593
  3. Tiwari, A.N., Agarwal, P., Srivastava, S.P.: 'Performance investigation of modified hysteresis current controller with the permanent magnet synchronous motor drive', IET Electr. Power Appl., 2010, 4, (2), pp. 101-108. https://doi.org/10.1049/iet-epa.2009.0022
  4. Jung, J.W., Leu, V.Q., Do, T.D., Kim, E.K., Choi, H.H.: 'Adaptive PID speed control design for permanent magnet synchronous motor drives', IEEE Trans. Ind. Electron., 2015, 30, (2), pp. 900-908.
  5. Lin, F.J., Yang, K.J., Sun, I.F., Chang, J.K.: 'Intelligent position control of permanent magnet synchronous motor using recurrent fuzzy neural cerebellar model articulation network', IET Electr. Power Appl., 2015, 9, (3), pp. 248-264. https://doi.org/10.1049/iet-epa.2014.0088
  6. Bernardes, T., Montagner, V.F., Gründling, H.A., Pinheiro, H.: 'Discrete-time sliding mode observer for sensorless vector control of permanent magnet synchronous machine', IEEE Trans. Ind. Electron., 2014, 61, (4), pp. 1679-1691. https://doi.org/10.1109/TIE.2013.2267700
  7. Errouissi, R., Ouhrouche, M., Chen, W.H., Trzynadlowski, A.M.: 'Robust nonlinear predictive controller for permanent-magnet synchronous motors with an optimized cost function', IEEE Trans. Ind. Electron., 2012, 59, (7), pp. 2849-2858. https://doi.org/10.1109/TIE.2011.2157276
  8. Arashloo, R. S., Romeral, M. J. L., Salehifar, M., Eguilaz, M. M.: 'Genetic algorithm-based output power optimisation of fault tolerant five-phase brushless direct current drives applicable for electrical and hybrid electrical vehicles'. IET Electr. Power Appl., 2014, 8, (7), pp. 267-277. https://doi.org/10.1049/iet-epa.2013.0247
  9. Lin, F. J., Hung, Y. C., Hwang, J. C., Chang, I. P., Tsai1et, M.T.: 'Digital signal processor-based probabilistic fuzzy neural network control of in-wheel motor drive for light electric vehicle', IET Electr. Power Appl., 2012, 6, (2), pp. 47-61. https://doi.org/10.1049/iet-epa.2011.0153
  10. Kim, W., Shin, D., Chung, C. C., 'Microstepping using a disturbance observer and a variable structure controller for permanent-magnet stepper motors', IEEE Trans. Ind. Electron., 2013, 60, (7), pp. 2689- 2699. https://doi.org/10.1109/TIE.2012.2198033
  11. Zhang, X.G., Sun, L.Z., Zhao, K., and Sun, L.: 'Nonlinear speed control for PMSM system using sliding-mode control and disturbance compensation techniques', IEEE Trans. Ind. Electron., 2013, 28, (3), pp. 1358-1365.
  12. Wu, S., Wang, Y., Cheng, S.: 'Optimal reset control design for current control and uncertainties estimation in permanent magnet synchronous', IET Electr. Power Appl., 2012, 6, (2), pp. 122-132. https://doi.org/10.1049/iet-epa.2011.0210
  13. Garcia, C. E., Prett, D. M., Morari, M.: 'Model predictive control: theory and practice - a survey', Automatica, 1989, 25, (3), pp. 335-348. https://doi.org/10.1016/0005-1098(89)90002-2
  14. Chen, W. H., Ballance, D. J., Gawthrop, P. J.: 'Optimal control of nonlinear systems: a predictive control approach', Automatica, 2003, 39, (4), pp. 633-641. https://doi.org/10.1016/S0005-1098(02)00272-8
  15. Errouissi, R., Ouhrouche, M., Chen, W.H., Trzynadlowski, A.M.: 'Robust cascaded nonlinear predictive control of a PMSM with anti-windup compensator', IEEE Trans. Ind. Electron., 2012, 59, (8), pp. 3078- 3088. https://doi.org/10.1109/TIE.2011.2167109
  16. Chen, Y., Liu, T. H., Hsiao, C. F., Lin, C. K.: 'Implementation of adaptive inverse controller for an interior permanent magnet synchronous motor adjustable speed drive system based on predictive current control', IET Electr. Power Appl., 2015, 9, (1), pp. 60-70. https://doi.org/10.1049/iet-epa.2014.0035
  17. Chai, S., Wang, L.P., Rogers, E.: 'A cascade MPC control structure for a PMSM with speed ripple minimization," IEEE Trans. Ind. Electron., 2013, 60, (8), pp. 2978-2987. https://doi.org/10.1109/TIE.2012.2201432
  18. Preindl, M., Bolognani, S.: 'Model predictive direct speed control with finite control set of PMSM drive systems,' IEEE Trans. Ind. Electron., 2013, 28, (2), pp. 1007-1015.
  19. Kuntze, H.B., Jacubasch, A., Richalet, J. Arber, C.: 'On the predictive functional control of an elastic industrial robot', in Proc. IEEE Conf. Decision and Control, Athens, 1986, 3, pp. 1877-1881.
  20. Richalet, J., Abu, E., Arber, C., Kuntze, H. B., Jacubasch, A., Schill, W.: 'Predictive functional control: application to fast and accurate robots', in Proc. 10th IFAC Worl. Congr., Munich, 1987, 4, pp. 251-258.
  21. Richalet, J. 'Industrial applications of model based predictive control', Automatica, 1993, 29, (5), pp. 1251-1274. https://doi.org/10.1016/0005-1098(93)90049-Y
  22. Hassan, A.A. Kassem, A.M.: 'Modeling, simulation and performance improvements of a PMSM based on functional model predictive control', Arab. J. Sci. Eng., 2013, 38, (11), pp. 3071-3079. https://doi.org/10.1007/s13369-012-0460-6
  23. Liu, H.X., Li, S.H.: 'Speed control for PMSM servo system using predictive functional control and extended state observe', IEEE Trans. Ind. Electron., 2012, 59, (2), pp. 1171-1183. https://doi.org/10.1109/TIE.2011.2162217
  24. Leu, V.Q., Choi, H.H., Jung, J. W., 'Fuzzy sliding mode speed controller for PM synchronous motors with a load torque observer', IEEE Trans. Power Electron., 2012, 27, (3), pp. 1530-1539. https://doi.org/10.1109/TPEL.2011.2161488
  25. Pongam, S., Sangwongwanich, S.: 'Stability and dynamic performance improvement of adaptive fullorder observers for sensorless PMSM drive', IEEE Trans. Power Electron., 2012, 27, (2), pp. 588-600. https://doi.org/10.1109/TPEL.2011.2153212
  26. Chen, B., Yao, W., Chen, F., Lu, Z.: 'Parameter sensitivity in sensorless induction motor drives with the adaptive full-order observer', IEEE Trans. Ind. Electron., 2015, 62, (7), pp. 4307-4318. https://doi.org/10.1109/TIE.2014.2388197
  27. Luenberger, D. G.: 'Observing the state of a linear system', IEEE Trans. Mil. Electron., 1964, 8, (2), pp. 74-80. https://doi.org/10.1109/TME.1964.4323124
  28. Luenberger, D.G.: 'An introduction to observers', IEEE Trans. Autom. Control, 1971, 16, (6), pp. 596- 602. https://doi.org/10.1109/TAC.1971.1099826
  29. Hafez, B., Abdel-Khalik, A. S., Massoud, A. M., Ahmed, S., Lorenz, R.D.: 'Single-sensor-based threephase permanent-magnet synchronous motor drive system with luenberger observers for motor line current reconstruction', IEEE Trans. Ind. Appl., 2014, 50, (4), pp. 2602-2613. https://doi.org/10.1109/TIA.2013.2296625
  30. Preindl, M., Schaltz, E., 'Sensorless model predictive direct current control using novel second-order PLL observer for PMSM drive systems', IEEE Trans. Ind. Electron., 2011, 58, (9), pp. 4087-4095. https://doi.org/10.1109/TIE.2010.2100331
  31. Vu, N. T. T., Choi, H. H., Kim, R. Y., Jung, J. W.: 'Robust speed control method for permanent magnet synchronous motor'. IET Electr. Power Appl., 2012, 6, (7), pp. 399-411. https://doi.org/10.1049/iet-epa.2011.0384
  32. Chan, T. F, Wang, W., Borsje, P., Wong, Y. K., Ho, S.L.: 'Sensorless permanent-magnet synchronous motor drive using a reduced-order rotor flux observer', IET Electr. Power Appl., 2008, 2, (2), pp. 88-98. https://doi.org/10.1049/iet-epa:20070234
  33. Grzesiak, L. M, Tarczewski, T.: 'PMSM servo-drive control system with a state feedback and a load torque feedforward compensation'. COMPEL-The international journal for computation and mathematics in electrical and electronic engineering, 2012, 32, (1), pp. 364-382. https://doi.org/10.1108/03321641311293939
  34. Fernando, T.L., Trinh, H., Jennings, L.: 'Functional observability and the design of minimum order linear functional observers', IEEE Trans. Autom. Control., 2010, 55, (5), pp. 1268-1273. https://doi.org/10.1109/TAC.2010.2042761

Cited by

  1. Improved Backstepping Control with Nonlinear Disturbance Observer for the Speed Control of Permanent Magnet Synchronous Motor vol.14, pp.1, 2019, https://doi.org/10.1007/s42835-018-00021-9
  2. A Parameter Identification Method Based on Forgetting Factor Dynamic Adjustment for PMSM Applied to the Rapid Control of Satellite Attitude vol.14, pp.1, 2019, https://doi.org/10.1007/s42835-018-00049-x