• Title/Summary/Keyword: prediction of concrete deterioration

Search Result 81, Processing Time 0.024 seconds

The Evaluation of Durability by NDT test of Marine-Concrete Structures (항만구조물의 비파괴시험에 의한 안정성 검토)

  • 조병완;이일근;강희풍
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1995.10a
    • /
    • pp.169-172
    • /
    • 1995
  • Establishment of a diagnosing technology for the deterioration of reinforced concrete structures due to salt contamination is urgent, but few analytical methods based on measured data obtained from concrete structures have been presented so far. Chloride penetration into concrete from sea water is generally understood and analysed as diffusion of chloride ion. This paper presents a new method of predicting chloride penetration into concrete based on diffusion theory. Also, it determines the duralility of Marine structure in service with the prediction of remaiing lifetime by the carvonation test.

  • PDF

Fuzzy methodology application for modeling uncertainties in chloride ingress models of RC building structure

  • Do, Jeongyun;Song, Hun;So, Seungyoung;Soh, Yangseob
    • Computers and Concrete
    • /
    • v.2 no.4
    • /
    • pp.325-343
    • /
    • 2005
  • Chloride ingress is a common cause of deterioration of reinforced concrete located in coastal zone. Modeling the chloride ingress is an important basis for designing reinforced concrete structures and for assessing the reliability of an existing structure. The modeling is also needed for predicting the deterioration of a reinforced structure. The existing deterministic solution for prediction model of corrosion initiation cannot reflect uncertainties which input variables have. This paper presents an approach to the fuzzy arithmetic based modeling of the chloride-induced corrosion of reinforcement in concrete structures that takes into account the uncertainties in the physical models of chloride penetration into concrete and corrosion of steel reinforcement, as well as the uncertainties in the governing parameters, including concrete diffusivity, concrete cover depth, surface chloride concentration and critical chloride level for corrosion initiation. There are a lot of prediction model for predicting the time of reinforcement corrosion of structures exposed to chloride-induced corrosion environment. In this work, RILEM model formula and Crank's solution of Fick's second law of diffusion is used. The parameters of the models are regarded as fuzzy numbers with proper membership function adapted to statistical data of the governing parameters instead of random variables of probabilistic modeling of Monte Carlo Simulation and the fuzziness of the time to corrosion initiation is determined by the fuzzy arithmetic of interval arithmetic and extension principle. An analysis is implemented by comparing deterministic calculation with fuzzy arithmetic for above two prediction models.

Remaining Service Life Prediction of Concrete Structures under Chloride-induced Loads (염해환경하의 콘크리트 구조물의 잔존수명 예측)

  • Song, Ha-Won;Luc, Dao Ngoc The
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.1037-1040
    • /
    • 2008
  • In order to predict the remaining life of marine concrete structures under climatic loads, it is necessary to develop an analytical approach to predict the time and space dependent deterioration of concrete structures due to mainly chloride attack up to corrosion initiation and additional deterioration like cracking of cover concrete. This study aims to introduce FEM model for life-time simulation of concrete structures subjected to chloride attack. In order to consider uncertainties in materials as well as environmental parameters for the prediction, Monte Carlo Simulation is integrated in that FEM modeling for reliability-based remaining service life prediction. The paper is organized as follows: firstly general scheme for reliability-based remaining service life of concrete structures is introduced, then the FEM models for chloride penetration, corrosion product expansion and cover cracking are briefly explained, finally an example is demonstrated and the effects of localization of chloride concentration and corrosion product expansion on service life using above model are discussed.

  • PDF

Estimation on Durability of Concrete Sewage in Kangnung City (강릉시 콘크리트 하수관거의 내구성 평가)

  • Choi, Sung-Ha;Choi, Yoon-Suk;Kim, Kang-Rea;Kim, Myung-Yu;Yang, Eun-Ik
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05b
    • /
    • pp.229-232
    • /
    • 2006
  • Most of sewage in our country has been made by concrete, and currently they shows gradual deterioration. One of serious problems happened in the sewage is a corrosion of sewage itself. Namely, biochemical corrosion is the most important one. Deterioration phenomenon in concrete used in sewage is occurred by environment condition of sewage, such as erosion by the acid, erosion by sulfate, corrosion by carbonation and so on several factors. However, at present, investigation data on durability of Kangnung city sewage is not sufficient. In addition, the prediction of repair time and selection of rehabilitation method is also not easy. Accordingly, in this research, investigation on durability of sewages located in Kangnung city was carried out. It will also supply the basic data for repair and rehabilitation.

  • PDF

A Study on Evaluation of Complex Deterioration evaluation and Prediction of Residual Life through Concrete Core (콘크리트 코어 분석을 통한 복합열화 평가와 잔존수명 예측 연구)

  • Shim, Jaeyoung
    • Journal of the Society of Disaster Information
    • /
    • v.13 no.3
    • /
    • pp.332-339
    • /
    • 2017
  • In the case of aged structures, the information of the structure is often lost after the completion of construction, and there is a great difficulty in predicting the durability life of the structure due to the lack of information on concrete formulations. In this study, the durability of concrete specimens was evaluated by various field and indoor test methods based on the core specimens collected from the field, and the durability life of the concrete structures was predicted by using the FEM analysis technique.As a result, the neutralization rate coefficient was $5.38E-6(cm^2/day)$ and the rate of progress was low. And the possibility of complex deterioration due to carbonation and salting was found to be very low.

A Study on the Prediction of Durability of Concrete Structures Subjected to Chloride Attack by Chloride Diffusion Model (염소이온의 확산모델에 의한 염해를 받는 콘크리트 구조물의 내구성 예측연구)

  • 오병환;장승엽;차수원;이명규
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.04a
    • /
    • pp.254-260
    • /
    • 1997
  • Chloride-induced corrosion of reinforcement is one of the main factors which cause the deterioration of concrete structures. Durability and service lives of the concrete sturctures should be predicted in order to minimize the risk of corrosion of reinforcement. The objective of this study is to suggest the basis of analytical methods of predicting the corrosion threhold time of concrete structures. Based on the chemistry and physics of chloride ion transport and corrosion process, chloride intrusion with various exposure conditions, variability of diffusivity and transport of pore water in concrete are taken into consideration in applying finite element formulation to the predicion of corrosion threhold time. The effects of main factors on the prediction of chloride intrusion and corrosion threhold time are examined. In addition, after chloride diffusivities of several mixture proportions with different parameters are measured by chloride diffusion test, the exemplary anayses of corrosion threhold time of those mixture proportions are carried out.

  • PDF

Prediction of Heat and Water Distribution in Concrete due to Changes in Temperature and Humidity (온도와 습도의 변화에 따른 콘크리트 내부의 열, 수분 분포 예측)

  • Park, Dong-Cheon;Lee, Jun-Hae
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2020.06a
    • /
    • pp.31-32
    • /
    • 2020
  • Concrete changes its internal moisture distribution depending on the external environment, and changes in the condition of the material's interior over time affect the performance of the concrete. These effects are closely related to the long-term behavior and durability of concrete, and the degree of deterioration varies from climate to climate in each region. In this study, we use actual climate data from each region with distinct climates. A multi-physical analysis based on the method was conducted to predict the difference and degree of deterioration rate by climate.

  • PDF

Prediction of RC structure service life from field long term chloride diffusion

  • Safehian, Majid;Ramezanianpour, Ali Akbar
    • Computers and Concrete
    • /
    • v.15 no.4
    • /
    • pp.589-606
    • /
    • 2015
  • It is well-documented that the major deterioration of coastal RC structures is chloride-induced corrosion. Therefore, regional investigations are necessary for durability based design and evaluation of the proposed service life prdiction models. In this paper, four reinforced concrete jetties exposed to severe marine environment were monitored to assess the long term chloride penetration at 6 months to 96 months. Also, some accelerated durability tests were performed on standard samples in laboratory. As a result, two time-dependent equations are proposed for basic parameters of chloride diffusion into concrete and then the corrosion initiation time is estimated by a developed probabilistic service life model Also, two famous service life prediction models are compared using chloride profiles obtained from structures after about 40 years in the tidal exposure conditions. The results confirm that the influence of concrete quality on diffusion coefficients is related to the concrete pore structure and the time dependence is due to chemical reactions of sea water ions with hydration products which lead a reduction in pore structure. Also, proper attention to the durability properties of concrete may extend the service life of marine structures greater than fifty years, even in harsh environments.

Effect of Carbonation Threshold Depth on the Initiation Time of Corrosion at the Concrete Durability Design (콘크리트의 내구성 설계시 탄산화 임계깊이가 철근부식 개시시기에 미치는 영향에 관한 연구)

  • Yang, Jae-Won;Lee, Sang-Hyun;Song, Hun;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2010.05a
    • /
    • pp.229-230
    • /
    • 2010
  • The Carbonation, one of the main deterioration factors of concrete, reduces capacity of members with providing rebar corrosion environment. Consequently it suggested standards of all countries of world, carbonation depth prediction equation of respective researchers and time to rebar corrosion initiation. As a result of carbonation depth prediction equation calculation, difference of time to rebar corrosion initiation is 149 years and difference of carbonation depth prediction equation is 162 years when water cement ratio is 50%. So a study on rebar corrosion with carbonation depth will need existing reliable data and verifications by experiment.

  • PDF

Probabilistic Prediction Model for the Cyclic Freeze-Thaw Deteriorations in Concrete Structures (콘크리트 구조물의 반복적 동결융해에 의한 확률론적 열화예측모델)

  • Cho, Tae-Jun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.957-960
    • /
    • 2006
  • In order to predict the accumulated damages by cyclic freeze-thaw, a regression analysis by the Response Surface Method (RSM) is used. RSM has merits when the other probabilistic simulation techniques can not guarantee the convergence of probability of occurrence or when the others can not differentiate the derivative terms of limit state functions, which are composed of random design variables in the model of complex system or the system having higher reliability. For composing limit state function, the important parameters for cyclic freeze-thaw-deterioration of concrete structures, such as water to cement ratio, entrained air pores, and the number of cycles of freezing and thawing, are used as input parameters of RSM. The predicted results of relative dynamic modulus and residual strains after 300 cycles of freeze-thaw for specimens show very good agreements with the experimental results. The RSM result can be used to predict the probability of occurrence for designer specified critical values. Therefore, it is possible to evaluate the life cycle management of concrete structures considering the accumulated damages by the cyclic freeze-thaw by the use of proposed prediction method.

  • PDF