• Title/Summary/Keyword: prediction of anomaly

Search Result 108, Processing Time 0.021 seconds

Multiple Sclerosis Lesion Detection using 3D Autoencoder in Brain Magnetic Resonance Images (3D 오토인코더 기반의 뇌 자기공명영상에서 다발성 경화증 병변 검출)

  • Choi, Wonjune;Park, Seongsu;Kim, Yunsoo;Gahm, Jin Kyu
    • Journal of Korea Multimedia Society
    • /
    • v.24 no.8
    • /
    • pp.979-987
    • /
    • 2021
  • Multiple Sclerosis (MS) can be early diagnosed by detecting lesions in brain magnetic resonance images (MRI). Unsupervised anomaly detection methods based on autoencoder have been recently proposed for automated detection of MS lesions. However, these autoencoder-based methods were developed only for 2D images (e.g. 2D cross-sectional slices) of MRI, so do not utilize the full 3D information of MRI. In this paper, therefore, we propose a novel 3D autoencoder-based framework for detection of the lesion volume of MS in MRI. We first define a 3D convolutional neural network (CNN) for full MRI volumes, and build each encoder and decoder layer of the 3D autoencoder based on 3D CNN. We also add a skip connection between the encoder and decoder layer for effective data reconstruction. In the experimental results, we compare the 3D autoencoder-based method with the 2D autoencoder models using the training datasets of 80 healthy subjects from the Human Connectome Project (HCP) and the testing datasets of 25 MS patients from the Longitudinal multiple sclerosis lesion segmentation challenge, and show that the proposed method achieves superior performance in prediction of MS lesion by up to 15%.

Data anomaly detection and Data fusion based on Incremental Principal Component Analysis in Fog Computing

  • Yu, Xue-Yong;Guo, Xin-Hui
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.10
    • /
    • pp.3989-4006
    • /
    • 2020
  • The intelligent agriculture monitoring is based on the perception and analysis of environmental data, which enables the monitoring of the production environment and the control of environmental regulation equipment. As the scale of the application continues to expand, a large amount of data will be generated from the perception layer and uploaded to the cloud service, which will bring challenges of insufficient bandwidth and processing capacity. A fog-based offline and real-time hybrid data analysis architecture was proposed in this paper, which combines offline and real-time analysis to enable real-time data processing on resource-constrained IoT devices. Furthermore, we propose a data process-ing algorithm based on the incremental principal component analysis, which can achieve data dimensionality reduction and update of principal components. We also introduce the concept of Squared Prediction Error (SPE) value and realize the abnormal detection of data through the combination of SPE value and data fusion algorithm. To ensure the accuracy and effectiveness of the algorithm, we design a regular-SPE hybrid model update strategy, which enables the principal component to be updated on demand when data anomalies are found. In addition, this strategy can significantly reduce resource consumption growth due to the data analysis architectures. Practical datasets-based simulations have confirmed that the proposed algorithm can perform data fusion and exception processing in real-time on resource-constrained devices; Our model update strategy can reduce the overall system resource consumption while ensuring the accuracy of the algorithm.

Decadal Change in Rainfall During the Changma Period in Early-2000s (2000년대 초반 우리나라 장마기간 강수량의 십년 변화 특성)

  • Woo, Sung-Ho;Yim, So-Young;Kwon, Min-Ho;Kim, Dong-Joon
    • Atmosphere
    • /
    • v.27 no.3
    • /
    • pp.345-358
    • /
    • 2017
  • The decadal change in rainfall for Changma period over the South Korea in early-2000s is detected in this study. The Changma rainfall in P1 (1992~2002) decade is remarkably less than in P2 (2003~2013) decade. The much rainfall in P2 decade is associated with the increase of rainy day frequency during Changma period, including the frequent occurrences of rainy day with a intensity of 30 mm/day or more in P2 decade. This decadal change in the Changma rainfall is due to the decadal change of atmospheric circulation around the Korean Peninsula which affects the intensity and location of Changma rainfall. During P2 decade, the anomalous anti-cyclone over the south of the Korean Peninsula, which represents the expansion of the North Pacific high with warm and wet air mass toward East Asia, is stronger than in P1 decade. In addition, the upper level zonal wind and meridional gradient of low-level equivalent potential temperature in P2 decade is relatively strengthened over the northern part of the Korean Peninsula than in P1 decade, which corresponds with the intensification of meridional gradient between air mass related to the East Asian summer monsoon nearby the Korean Peninsula in P2 decade. The enhanced meridional gradient of atir mass during P2 decade is favorable condition for the intensification of Changma rainfall band and more Changma rainfall. The atmospheric conditions related to enhanced Changma rainfall during P2 decade is likely to be influenced by the teleconnection linked to the suppressed convection anomaly over the southern part of China and South China Sea in P2 decade.

A Study on the Anomaly Prediction System of Drone Using Big Data (빅데이터를 활용한 드론의 이상 예측시스템 연구)

  • Lee, Yang-Kyoo;Hong, Jun-Ki;Hong, Sung-Chan
    • Journal of Internet Computing and Services
    • /
    • v.21 no.2
    • /
    • pp.27-37
    • /
    • 2020
  • Recently, big data is rapidly emerging as a core technology in the 4th industrial revolution. Further, the utilization and the demand of drones are continuously increasing with the development of the 4th industrial revolution. However, as the drones usage increases, the risk of drones falling increases. Drones always have a risk of being able to fall easily even with small problems due to its simple structure. In this paper, in order to predict the risk of drone fall and to prevent the fall, ESC (Electronic Speed Control) is attached integrally with the drone's driving motor and the acceleration sensor is stored to collect the vibration data in real time. By processing and monitoring the data in real time and analyzing the data through big data obtained in such a situation using a Fast Fourier Transform (FFT) algorithm, we proposed a prediction system that minimizes the risk of drone fall by analyzing big data collected from drones.

Comparison of the Machine Learning Models Predicting Lithium-ion Battery Capacity for Remaining Useful Life Estimation (리튬이온 배터리 수명추정을 위한 용량예측 머신러닝 모델의 성능 비교)

  • Yoo, Sangwoo;Shin, Yongbeom;Shin, Dongil
    • Journal of the Korean Institute of Gas
    • /
    • v.24 no.6
    • /
    • pp.91-97
    • /
    • 2020
  • Lithium-ion batteries (LIBs) have a longer lifespan, higher energy density, and lower self-discharge rates than other batteries, therefore, they are preferred as an Energy Storage System (ESS). However, during years 2017-2019, 28 ESS fire accidents occurred in Korea, and accurate capacity estimation of LIB is essential to ensure safety and reliability during operations. In this study, data-driven modeling that predicts capacity changes according to the charging cycle of LIB was conducted, and developed models were compared their performance for the selection of the optimal machine learning model, which includes the Decision Tree, Ensemble Learning Method, Support Vector Regression, and Gaussian Process Regression (GPR). For model training, lithium battery test data provided by NASA was used, and GPR showed the best prediction performance. Based on this study, we will develop an enhanced LIB capacity prediction and remaining useful life estimation model through additional data training, and improve the performance of anomaly detection and monitoring during operations, enabling safe and stable ESS operations.

Predictability of Northern Hemisphere Teleconnection Patterns in GloSea5 Hindcast Experiments up to 6 Weeks (GloSea5 북반구 대기 원격상관패턴의 1~6주 주별 예측성능 검증)

  • Kim, Do-Kyoung;Kim, Young-Ha;Yoo, Changhyun
    • Atmosphere
    • /
    • v.29 no.3
    • /
    • pp.295-309
    • /
    • 2019
  • Due to frequent occurrence of abnormal weather, the need to improve the accuracy of subseasonal prediction has increased. Here we analyze the performance of weekly predictions out to 6 weeks by GloSea5 climate model. The performance in circulation field from January 1991 to December 2010 is first analyzed at each grid point using the 500-hPa geopotential height. The anomaly correlation coefficient and mean-square skill score, calculated each week against the ECWMF ERA-Interim reanalysis data, illustrate better prediction skills regionally in the tropics and over the ocean and seasonally during winter. Secondly, we evaluate the predictability of 7 major teleconnection patterns in the Northern Hemisphere: North Atlantic Oscillation (NAO), East Atlantic (EA), East Atlantic/Western Russia (EAWR), Scandinavia (SCAND), Polar/Eurasia (PE), West Pacific (WP), Pacific-North American (PNA). Skillful predictability of the patterns turns out to be approximately 1~2 weeks. During summer, the EAWR and SCAND, which exhibit a wave pattern propagating over Eurasia, show a considerably lower skill than the other 5 patterns, while in winter, the WP and PNA, occurring in the Pacific region, maintain the skill up to 2 weeks. To account for the model's bias in reproducing the teleconnection patterns, we measure the similarity between the teleconnection patterns obtained in each lead time. In January, the model's teleconnection pattern remains similar until lead time 3, while a sharp decrease of similarity can be seen from lead time 2 in July.

An Assessment of Applicability of Heat Waves Using Extreme Forecast Index in KMA Climate Prediction System (GloSea5) (기상청 현업 기후예측시스템(GloSea5)에서의 극한예측지수를 이용한 여름철 폭염 예측 성능 평가)

  • Heo, Sol-Ip;Hyun, Yu-Kyung;Ryu, Young;Kang, Hyun-Suk;Lim, Yoon-Jin;Kim, Yoonjae
    • Atmosphere
    • /
    • v.29 no.3
    • /
    • pp.257-267
    • /
    • 2019
  • This study is to assess the applicability of the Extreme Forecast Index (EFI) algorithm of the ECMWF seasonal forecast system to the Global Seasonal Forecasting System version 5 (GloSea5), operational seasonal forecast system of the Korea Meteorological Administration (KMA). The EFI is based on the difference between Cumulative Distribution Function (CDF) curves of the model's climate data and the current ensemble forecast distribution, which is essential to diagnose the predictability in the extreme cases. To investigate its applicability, the experiment was conducted during the heat-wave cases (the year of 1994 and 2003) and compared GloSea5 hindcast data based EFI with anomaly data of ERA-Interim. The data also used to determine quantitative estimates of Probability Of Detection (POD), False Alarm Ratio (FAR), and spatial pattern correlation. The results showed that the area of ERA-Interim indicating above 4-degree temperature corresponded to the area of EFI 0.8 and above. POD showed high ratio (0.7 and 0.9, respectively), when ERA-Interim anomaly data were the highest (on Jul. 11, 1994 (> $5^{\circ}C$) and Aug. 8, 2003 (> $7^{\circ}C$), respectively). The spatial pattern showed a high correlation in the range of 0.5~0.9. However, the correlation decreased as the lead time increased. Furthermore, the case of Korea heat wave in 2018 was conducted using GloSea5 forecast data to validate EFI showed successful prediction for two to three weeks lead time. As a result, the EFI forecasts can be used to predict the probability that an extreme weather event of interest might occur. Overall, we expected these results to be available for extreme weather forecasting.

Comparison of Prediction Accuracy Between Classification and Convolution Algorithm in Fault Diagnosis of Rotatory Machines at Varying Speed (회전수가 변하는 기기의 고장진단에 있어서 특성 기반 분류와 합성곱 기반 알고리즘의 예측 정확도 비교)

  • Moon, Ki-Yeong;Kim, Hyung-Jin;Hwang, Se-Yun;Lee, Jang Hyun
    • Journal of Navigation and Port Research
    • /
    • v.46 no.3
    • /
    • pp.280-288
    • /
    • 2022
  • This study examined the diagnostics of abnormalities and faults of equipment, whose rotational speed changes even during regular operation. The purpose of this study was to suggest a procedure that can properly apply machine learning to the time series data, comprising non-stationary characteristics as the rotational speed changes. Anomaly and fault diagnosis was performed using machine learning: k-Nearest Neighbor (k-NN), Support Vector Machine (SVM), and Random Forest. To compare the diagnostic accuracy, an autoencoder was used for anomaly detection and a convolution based Conv1D was additionally used for fault diagnosis. Feature vectors comprising statistical and frequency attributes were extracted, and normalization & dimensional reduction were applied to the extracted feature vectors. Changes in the diagnostic accuracy of machine learning according to feature selection, normalization, and dimensional reduction are explained. The hyperparameter optimization process and the layered structure are also described for each algorithm. Finally, results show that machine learning can accurately diagnose the failure of a variable-rotation machine under the appropriate feature treatment, although the convolution algorithms have been widely applied to the considered problem.

Global Ocean Data Assimilation and Prediction System 2 in KMA: Operational System and Improvements (기상청 전지구 해양자료동화시스템 2(GODAPS2): 운영체계 및 개선사항)

  • Hyeong-Sik Park;Johan Lee;Sang-Min Lee;Seung-On Hwang;Kyung-On Boo
    • Atmosphere
    • /
    • v.33 no.4
    • /
    • pp.423-440
    • /
    • 2023
  • The updated version of Global Ocean Data Assimilation and Prediction System (GODAPS) in the NIMS/KMA (National Institute of Meteorological Sciences/Korea Meteorological Administration), which has been in operation since December 2021, is being introduced. This technical note on GODAPS2 describes main progress and updates to the previous version of GODAPS, a software tool for the operating system, and its improvements. GODAPS2 is based on Forecasting Ocean Assimilation Model (FOAM) vn14.1, instead of previous version, FOAM vn13. The southern limit of the model domain has been extended from 77°S to 85°S, allowing the modelling of the circulation under ice shelves in Antarctica. The adoption of non-linear free surface and variable volume layers, the update of vertical mixing parameterization, and the adjustment of isopycnal diffusion coefficient for the ocean model decrease the model biases. For the sea-ice model, four vertical ice layers and an additional snow layer on top of the ice layers are being used instead of previous single ice and snow layers. The changes for data assimilation include the updated treatment for background error covariance, a newly added bias scheme combined with observation bias, the application of a new bias correction for sea level anomaly, an extension of the assimilation window from 1 day to 2 days, and separate assimilations for ocean and sea-ice. For comparison, we present the difference between GODAPS and GODAPS2. The verification results show that GODAPS2 yields an overall improved simulation compared to GODAPS.

Verification and Comparison of Forecast Skill between Global Seasonal Forecasting System Version 5 and Unified Model during 2014 (2014년 계절예측시스템과 중기예측모델의 예측성능 비교 및 검증)

  • Lee, Sang-Min;Kang, Hyun-Suk;Kim, Yeon-Hee;Byun, Young-Hwa;Cho, ChunHo
    • Atmosphere
    • /
    • v.26 no.1
    • /
    • pp.59-72
    • /
    • 2016
  • The comparison of prediction errors in geopotential height, temperature, and precipitation forecasts is made quantitatively to evaluate medium-range forecast skills between Global Seasonal Forecasting System version 5 (GloSea5) and Unified Model (UM) in operation by Korea Meteorological Administration during 2014. In addition, the performances in prediction of sea surface temperature anomaly in NINO3.4 region, Madden and Julian Oscillation (MJO) index, and tropical storms in western north Pacific are evaluated. The result of evaluations appears that the forecast skill of UM with lower values of root-mean square error is generally superior to GloSea5 during forecast periods (0 to 12 days). The forecast error tends to increase rapidly in GloSea5 during the first half of the forecast period, and then it shows down so that the skill difference between UM and GloSea5 becomes negligible as the forecast time increases. Precipitation forecast of GloSea5 is not as bad as expected and the skill is comparable to that of UM during 10-day forecasts. Especially, in predictions of sea surface temperature in NINO3.4 region, MJO index, and tropical storms in western Pacific, GloSea5 shows similar or better performance than UM. Throughout comparison of forecast skills for main meteorological elements and weather extremes during medium-range, the effects of initial and model errors in atmosphere-ocean coupled model are verified and it is suggested that GloSea5 is useful system for not only seasonal forecasts but also short- and medium-range forecasts.