• Title/Summary/Keyword: prediction equation of concrete

Search Result 221, Processing Time 0.026 seconds

Modification of Creep-Prediction Equation of Concrete utilizing Short-term Creep Test (단기 크리프 시험 결과를 이용한 콘크리트의 크리프 예측시의 수정)

  • 송영철;송하원;변근주
    • Journal of the Korea Concrete Institute
    • /
    • v.12 no.4
    • /
    • pp.69-78
    • /
    • 2000
  • Creep of concrete is the most dominating factor affecting time-dependent deformations of concrete structures. Especially, creep deformation for design and construction in prestressed concrete structures should be predicted accurately because of its close relation with the loss in prestree of prestressed concrete structures. Existing creep-prediction models for special applications contain several impractical factors such as the lack ok accuracy, the requirement of long-term test and the lack of versatility for change in material properties, ets., which should be improved. In order to improve those drawbacks, a methodology to modify the creep-prediction equation specified in current Korean concrete structures design standard (KCI-99), which underestimates creep of concrete and does not consider change of condition in mixture design, is proposed. In this study, short-term creep tests were carried out for early-age concrete within 28 days after loading and their test results on influencing factors in the equation are analysed. Then, the prediction equation was modified by using the early-age creep test results. The modified prediction equation was verified by comparing their results with results obtained from long-term creep test.

A Study on the Prediction of Chloride Diffusion Coefficient in Concrete for mediocre apply (범용적 적용을 위한 콘크리트의 염화물 확산계수 예측에 관한 연구)

  • Kim, Dong-Seok;Yoo, Jae-Kang;Kim, Young-Jin
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05b
    • /
    • pp.189-192
    • /
    • 2006
  • This study was performed to suggest the mediocre prediction equation of chloride diffusion coefficient which is used to estimate the service life of marine concrete, in order to provide the useful data for concrete mix design of marine concrete. As a result, the mediocre prediction equation of chloride diffusion coefficient which set W/B and mineral admixture replacement ratio as parameters was presented by performing the multivariate non linear regression analysis.

  • PDF

The Prediction of Remaining Service Life of Land Concrete Due to Steel Corrosion (철근부식에 의한 육지 콘크리트의 잔존수명 예측)

  • 정우용;윤영수;송하원;변근주
    • Journal of the Korea Concrete Institute
    • /
    • v.12 no.5
    • /
    • pp.69-80
    • /
    • 2000
  • This paper presents the prediction of remaining service life of the concrete due to steel corrosion caused by the following three cases; carbonation, using sea sand and using deicing salts. The assessment of initiation period was generalized considering the existing perdiction models in the literature, corrosion experiment and field assessment. To evaluate the prediction equation of rust growth, the corrosion accelerating experiments was performed. The polarization resistance was measured by potentiostat and the conversion coefficient of polarzation resistance to corrosion rate was determined by the measurement of real mass loss. Chloride content, carbonation, cover depth, relative humidity, water-cement ratio(W/C), and the use of deicing salts were taken into account and the resulting prediction equation of rust growth was proposed on the basis of these properties. The proposed equation is to predict the rust growth during any specified period of time and be effective in particular for predicting service life of concrete in the case of using sea sand.

A Study on Prediction of Early-Age Concrete Strength by Maturity Concept(II) (콘크리트 조기강도 예측을 위한 합리적인 기법 연구(II))

  • 오병환;채성태;이명규;김광수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1995.10a
    • /
    • pp.124-128
    • /
    • 1995
  • It is the "maturity rule" that concrete of the same mix, at the same maturity, has the same strength. In this study, the Nurse-Saul function which was proposed to account for the effects of temperature and time on strength development is used in computing maturity. After existing various functions to relate concrete strength to the maturity value are considered, new strenth-maturity function is proposed. Tests are conducted in order to compare prediction value with measured concrete strength. The constants in proposed prediction equation are determined by standard specimens(cylinders) test, and the equation is adopted to predict strength of slab. The slab was cast in the laboratory from the same batch of mole, and cores are cut from slab in order to estimate the actual strength. Tehese values are used to compare with proposed equation. equation.

  • PDF

A Suggestion for Carbonation Prediction Using Domestic Field Survey Data of Carbonation (국내 탄산화 실태자료를 이용한 탄산화 예측식의 제안)

  • Kwon, Seung-Jun;Park, Sang-Sun;Nam, Sang-Hyeok
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.11 no.5
    • /
    • pp.81-88
    • /
    • 2007
  • Among deteriorations of concrete due to environmental exposure, carbonation problems of concrete structures have increased in urban and underground structures. But conventional carbonation-prediction equations that were proposed by foreign references, can not be applied directly to the prediction of carbonation for domestic concrete structures. The purpose of this study is to propose a prediction equation of carbonation depth by considering domestic exposure conditions of concrete structures. For the derivation of the equation, conventional carbonation-prediction equations are analyzed. Through considering the relationship between results of prediction equation and those of various domestic field survey data, the so-called correction factors for different domestic exposure condition of concrete structures are derived. Finally, a carbonation-prediction equation of concrete structures under domestic exposure conditions is proposed with consideration for concrete strength in core and correction factors.

Prediction of Concrete Strength Using Artificial Neural Networks (인공신경망을 이용한 콘크리트 강도 추정)

  • 이승창;안정찬;정문영;임재홍
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.05a
    • /
    • pp.997-1002
    • /
    • 2002
  • Traditional prediction models have been developed with a fixed equation form based on the limited number of data and parameters. If new data is quite different from original data, then the model should update not only its coefficients but also its equation form. However, artificial neural network (ANN) does not need a specific equation form. Instead of that, it needs enough input-output data. Also, it can continuously re-train the new data, so that it can conveniently adapt to new data. Therefore, the purpose of this paper is to develop the I-PreConS (Intelligent system for PREdiction of CONcrete Strength using ANN) that provides in-place strength information of the concrete to facilitate concrete form removal and scheduling for construction.

  • PDF

Flexural Strength of Steel Fiber Reinforced Concrete Beams (강섬유보강 콘크리트보의 휨강도에 관한 연구)

  • 김우석;백승민;곽윤근
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.695-700
    • /
    • 2001
  • The objective of this study is to evaluate the flexure strength of steel fiber reinforced concrete beams and the effect of the adding steel fiber to flexural strength, and is to compare the proposed equation with the previous equation for predicting the flexural strength of fiber reinforced concrete beams. Based on earlier published studies and tests, predictive equation is proposed for evaluating the flexural strength of steel fiber reinforced concrete beams. The proposed equation gave good prediction for the flexural strength of the tested beams.

  • PDF

An Experimental Study on the Verification of Prediction System of Concrete Strength Using Artificial Neural Networks (인공신경망을 이용한 강도추정 시스템의 검증에 관한 실험적 연구)

  • Song Min Seob;Park Jong Ho;Kim Kab Soo;Jang Jong Ho;Lim Jae Hong;Kim Moo Han
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.446-449
    • /
    • 2004
  • Traditional prediction models have been developed with a fixed equation from based on the limited number of data and parameters. If new data is quite different from original data, then the model should update not only its coefficients but also its equation form. However, artificial neural network dose not need a specific equation form. Instead of that, it needs enough input-output data. Also, it can continuously re-train the new data, so that it can conveniently adapt to new data. Therefore, the purpose of this study is to verify faith and application of prediction system of concrete strength using artificial neural networks through mock-up test.

  • PDF

Effect of Carbonation Threshold Depth on the Initiation Time of Corrosion at the Concrete Durability Design (콘크리트의 내구성 설계시 탄산화 임계깊이가 철근부식 개시시기에 미치는 영향에 관한 연구)

  • Yang, Jae-Won;Lee, Sang-Hyun;Song, Hun;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2010.05a
    • /
    • pp.229-230
    • /
    • 2010
  • The Carbonation, one of the main deterioration factors of concrete, reduces capacity of members with providing rebar corrosion environment. Consequently it suggested standards of all countries of world, carbonation depth prediction equation of respective researchers and time to rebar corrosion initiation. As a result of carbonation depth prediction equation calculation, difference of time to rebar corrosion initiation is 149 years and difference of carbonation depth prediction equation is 162 years when water cement ratio is 50%. So a study on rebar corrosion with carbonation depth will need existing reliable data and verifications by experiment.

  • PDF

A new approach for predicting sulfate ion concentration in concrete

  • Mohammad Ghanooni-Bagha;Mohsen Ali Shayanfar;Sajad Momen
    • Computers and Concrete
    • /
    • v.33 no.1
    • /
    • pp.1-11
    • /
    • 2024
  • Aggressive environmental conditions, and especially the acidic effects of sulfate ion penetration, have reduced the lifetime of concrete structures in some areas, especially coastal and marine areas. In this research, at first, samples made of type II and V cement were kept in a solution of magnesium sulfate (MgSO4) for a period of 90 and 180 days, the change of appearance. Field Emission Scanning Electron Microscopy (FE-SEM) and X-Ray Diffraction (XRD), were used to analyze the microstructure and the complex mineral composition of the concrete after exposure to corrosive environments. Then solving the differential equation governing the sulfate ion penetration, which is based on the second Fick law, it has been tried to determine the concentration of sulfate ions inside the concrete. In the following, an attempt has been made to improve the prediction of sulfate ion concentration in concrete by using Crank's penetration equation. At the same time, the coefficient in the Crank's solution have been optimized by using the Particle Swarm Optimization (PSO algorithm). The comparison between the results shows that the values obtained from Crank's relation are closer to the experimental results than the equation obtained from Fick's second law and shows a more accurate prediction.