Tanga, Bereket Molla;Qamar, Ahmad Yar;Raza, Sanan;Bang, Seonggyu;Fang, Xun;Yoon, Kiyoung;Cho, Jongki
Animal Bioscience
/
v.34
no.8
/
pp.1253-1270
/
2021
Assessment of male fertility is based on the evaluation of sperm. Semen evaluation measures various sperm quality parameters as fertility indicators. However, semen evaluation has limitations, and it requires the advancement and application of strict quality control methods to interpret the results. This article reviews the recent advances in evaluating various sperm-specific quality characteristics and methodologies, with the help of different assays to assess sperm-fertility status. Sperm evaluation methods that include conventional microscopic methods, computer-assisted sperm analyzers (CASA), and flow cytometric analysis, provide precise information related to sperm morphology and function. Moreover, profiling fertility-related biomarkers in sperm or seminal plasma can be helpful in predicting fertility. Identification of different sperm proteins and diagnosis of DNA damage has positively contributed to the existing pool of knowledge about sperm physiology and molecular anomalies associated with different infertility issues in males. Advances in methods and sperm-specific evaluation has subsequently resulted in a better understanding of sperm biology that has improved the diagnosis and clinical management of male factor infertility. Accurate sperm evaluation is of paramount importance in the application of artificial insemination and assisted reproductive technology. However, no single test can precisely determine fertility; the selection of an appropriate test or a set of tests and parameters is required to accurately determine the fertility of specific animal species. Therefore, a need to further calibrate the CASA and advance the gene expression tests is recommended for faster and field-level applications.
Objective: The aim of this study was to measure reactive oxygen species (ROS) production and total antioxidant capacity (TAC) in the seminal fluid of the male partners in couples undergoing intrauterine insemination and to evaluate correlations between these values and their semen parameters. Methods: The study was conducted at Vamsam Fertility Center, Coimbatore, India and enrolled 110 male patients from whom semen samples were collected. ROS production was measured by a thiobarbituric acid reactive species assay, and TAC was measured by a 2,2-diphenyl-2-picrylhydrazyl free radical assay. The differences in the TAC and malondialdehyde (MDA) levels between the subfertile and fertile groups were analysed. Correlations between sperm parameters and TAC and MDA levels were statistically analysed, and cutoff values with respect to the controls were determined. All hypothesis tests used were two-tailed, with statistical significance assessed at the level of p< 0.05. Results: A total of 87 subfertile and 23 fertile men were included in the study. The mean MDA level was significantly higher in the subfertile subjects than in the fertile subjects, and the mean antioxidant level was significantly lower in the subfertile subjects than in the fertile subjects. Seminal MDA levels were negatively associated with sperm concentration, motility, and morphology, whereas the opposite was seen with TAC levels. Conclusion: Measurements of seminal TAC and ROS are valuable for predicting semen quality, and hence predicting the outcomes of fertility treatment.
The Korean fertility rate has been declining rapidly since 2000 with the fertility rate among provinces following a uniform tendency. In particular, the province-specific fertility rate is an essential tool for local governments to prepare local policies for low fertility aging policy, education and welfare policies. However, there is limitation on how to reflect different trends on the province-specific fertility rate because the KOSTAT's (2017) province-specific fertility rate projection estimates information use the national average birth rate date of vital statistics for the last 10 years (5 years). In this study, we propose an improvement plan that simultaneously considers important stable pattern maintenance and provincial fertility rate differentiation for an annual birth rate estimation. The method proposed in this study (proposal 1 and 2) can reflect birth rate changes from past to present and national and provincial differences by age that use time series data of the annual fertility rate. Proposal 3 also reflects the unique fertility rate trend from the past to the present by age according to province regardless of the relationship with the national trend. Therefore, it is preferable to use a relationship to the national rate when predicting the birth rate, as in proposals 1 and 2 because the national and the provincial fertility rate pattern are similar. These proposals show improved stability in terms of age-specific fertility rates.
Objective: Several studies have reported the development of new molecular methods for the prognosis and diagnosis of male fertility based on biomarkers aimed at overcoming the limitations of conventional male fertility analysis tools. However, further studies are needed for the field application of these methods. Therefore, alternative methods based on existing semen analysis methods are required to improve production efficiency in the animal industry. Methods: we examined the possibility of improving litter size in various pig breeds using combined Hoechst 33258/chlortetracycline fluorescence (H33258/CTC) staining. The correlation between field fertility and capacitation status by combined H33258/CTC staining in different ejaculates spermatozoa (n = 3) from an individual boar (20 Landrace, 20 Yorkshire, and 20 Duroc) was evaluated as well as overall accuracy. Results: The acrosome reacted (AR) pattern after capacitation (%) was positively correlated with the litter size of Landrace, Yorkshire, and Duroc pigs and the overall accuracy was 75%, 75%, and 70% in Landrace, Yorkshire, and Duroc pigs, respectively. The difference (${\Delta}$) in AR pattern before and after capacitation was positively correlated with the litter size of Landrace, Yorkshire, and Duroc pigs and the overall accuracy was 80%, 65%, and 55% in Landrace, Yorkshire, and Duroc pigs, respectively. However, the difference (${\Delta}$) in capacitated (B) pattern before and after capacitation was negatively correlated with the litter size of Landrace pigs and the overall accuracy was 75%. Moreover, average litter size was significantly altered according to different combined H33258/CTC staining parameters. Conclusion: These results show that combined H33258/CTC staining may be used to predict male fertility in various breeds. However, the selection of specific efficiency combined H33258/CTC staining parameters requires further consideration. Taken together, these findings suggest that combined H33258/CTC staining may constitute an alternative method for predicting male fertility until such time as fertility-related biomarkers are further validated.
This study was designed to determine the relationship between sperm acrosome reaction following ionophore challenge(ARIC) and hamster ovum sperm penetration assay(SPA) as assessment of fertilizing capacity of male. ARIC test and SPA were performed in 23 fertile and 19 subfertile men. The results were as follows; Sperm concentration was significantly higher in fertile group compared with subfertile group: $114.6{\pm}64.40$ vs $61.3{\pm}46.50{\times}10^6/ml$. However, there were no significantly differences in seminal volume, motility and motility index, respectively. There was a significantly correlation between spontaneous and induced AR in fertile and subfertile group, respectively. ARIC value was significantly higher in fertile group, compared with subfertile group: $12.0{\pm}5.57%$ vs $2.6{\pm}4.96%$. Both Penetration rate(PR) and Penetration index(PI) were significantly higher in fertile group, compared with subfertile group: $97.4{\pm}7.40%$ vs $64.9{\pm}36$. 20% and $5.4{\pm}2.88$ vs $1.5{\pm}1.47$, respectively. The Positive predictive value(PPV), Negative predictive value(NPV), sensitivity and specificity of ARIC test (cut-off: 8.5) and SPA(PI cut-off : 3.0) in predicting fertility were 95.0%, 81.8%, 82.6%, 94.7% and 95.2%, 85.7%, 87.0% and 94.7%, respectively. There was no significantly difference in predicting fertility between ARIC test and SPA. In conclusion, ARIC test was shown to have a predictive value for fertilizing capacity comparable to that of the hamster ovum sperm penetration assay. Therefore, ARIC test may be a simple and cost-effective addition to existing semenology instead of SPA.
Seok, Hyun Ha;Song, Haengseok;Lyu, Sang Woo;Kim, You Shin;Lee, Dong Ryul;Lee, Woo Sik;Yoon, Tae Ki
Clinical and Experimental Reproductive Medicine
/
v.43
no.2
/
pp.126-132
/
2016
Objective: The purpose of this study was to identify useful clinical factors for the identification of patients with polycystic ovary syndrome (PCOS) who would benefit from in vitro maturation (IVM) treatment without exhibiting compromised pregnancy outcomes. Methods: A retrospective cohort study was performed of 186 consecutive patients with PCOS who underwent human chorionic gonadotropin-primed IVM treatment between March 2010 and March 2014. Only the first IVM cycle of each patient was included in this study. A retrospective case-control study was subsequently conducted to compare pregnancy outcomes between IVM and conventional in vitro fertilization (IVF) cycles. Results: Through logistic regression analyses, we arrived at the novel finding that serum $anti-M{\ddot{u}}llerian$ hormone (AMH) levels and the number of fertilized oocytes in IVM were independent predictive factors for live birth with unstandardized coefficients of 0.078 (95% confidence interval [CI], 1.005-1.164; p=0.037) and 0.113 (95% CI, 1.038-1.208; p=0.003), respectively. Furthermore, these two parameters were able to discriminate patients who experienced live births from non-pregnant IVM patients using cut-off levels of 8.5 ng/mL and five fertilized oocytes, respectively. A subsequent retrospective case-control study of patients with PCOS who had serum AMH levels ${\geq}8.5ng/mL$ showed that IVM had pregnancy outcomes comparable to conventional IVF, and that no cases of ovarian hyperstimulation syndrome were observed. Conclusion: Serum AMH levels are a useful factor for predicting pregnancy outcomes in PCOS patients before the beginning of an IVM cycle. IVM may be an alternative to conventional IVF for PCOS patients if the patients are properly selected according to predictive factors such as serum AMH levels.
Park, Hyun Jong;Lee, Geun Ho;Gong, Du Sik;Yoon, Tae Ki;Lee, Woo Sik
Clinical and Experimental Reproductive Medicine
/
v.43
no.3
/
pp.139-145
/
2016
Measurements of ovarian reserve play an important role in predicting the clinical results of assisted reproductive technology (ART). The ideal markers of ovarian reserve for clinical applications should have high specificity in order to determine genuine poor responders. Basal follicle-stimulating hormone levels, antral follicle count, and serum anti-$M{\ddot{u}}llerian$ hormone (AMH) levels have been suggested as ovarian reserve tests that may fulfill this requirement, with serum AMH levels being the most promising parameter. Serum AMH levels have been suggested to be a predictor of clinical pregnancy in ART for older women, who are at a high risk for decreased ovarian response. We reviewed the prognostic significance of ovarian reserve tests for patients undergoing ART treatment, with a particular focus on the significance of serum AMH levels in patients at a high risk of poor ovarian response.
In the first paper of the series the five soil fertility factors were evaluated by means of principal component analysis and varimax method. They are interpreted as representing, 1) skeletal available phosporus status, 2) organnic matter status, 3) salt status 4) base status, and 5) free oxide status. In order to resynthesize such fragmented information for the overall soil fertility evaluation, the method of multiple regression analysis was adopted, using the five factor scores and yield data for Korean paddy soils as independent and dependent variables respectively. As test of linear models with different combinations of independent variables the results of t-test of regression coefficient were revealed that the organic matter status (FII) has no relevance to the yield of paddy and that the free oxides and salt supply has by it self only an insignificant contribution to the yield. The multiple correlation coefficient (R) revealed its multiple regression analysis was as low as 0.43. Introduction of quadratic terms to the linear model bettered the result. Thus multiple correlation coefficient (R) was increased as 0.59. Therefore, a coefficient of determination 0.35 was obtained by a quadratic model with interaction terms among the five fertility constituents. Generally we think that the fertility factor has more contribution to raise the rice yield in paddy and that the failure of yield prediction by fertility factor scores was caused by one of follows; 1) the roughness of the yield inspection, and 2) missextraction of fertility constituents. The second step in this study, assuming that the residuals by multiple regression analysis were due to factors other than soil fertility, we can now proceed to predicting the yield from the field characters with the classified fertility groups by means of Hayashi's theory of quantification No. 1. Such variables as fertility groups (FTYG), water availability (WATER), soil drainage (DRNG), climatic zone (CLIZ), surface soil's stickiness (STCKT), surface soil's dry consistence (DCNST), and surface soil's texture (FTEXT) are taken up as the explanatory variables. The quantification appears reasonable; the well to extremely well in soil drainage, very sticky of surface soil, inefficiency in water availability, coarse texture, and very hard to extremely hard dry consistence in soil are detrimental to the rice yield. The R was as high as 0.90 for the set of variables. But the given explanatory variables in this study were not quite effective in explaining rice yield. The method developed seems to be promising only if properly collected data are available. Conditions that should be satisfied in the yield inspection obtained from common cultivator for the purpose of deriving a prediction equation were put forward.
We empirically analyze the effects of psychological factors, such as the fear of parenting, on fertility rates. An index is calculated based on the share of negative news articles on child care in all social articles from 2000 to 2018. The analysis result shows that as the index increases, the fertility rate after three years falls. This result is repeated in the correlation analysis, simple regression, and VAR analysis. According to Granger causality analysis, it is found that the relation between the index and the fertility rate after three years is not just a simple correlation but a causal relationship. There are differences among age groups. The fertility rate of women in their 20s and 30s shows a significant response to the index, but that of the 40s does not. The index affects the birthrate of first child, but do not affect the birthrate of second or more children. These results are consistent with the intuition that younger women are more likely to be affected by the negative articles about parenting, but not to those who have already experienced childbirth. This study is meaningful in that a significant index for predicting social phenomena is extracted beyond the limited use of news big data such as a simple keyword mention volume monitoring. Also, this big data-based index is a 3-year leading indicator for fertility, which provides the advantage of providing information that helps early detection.
International Journal of Computer Science & Network Security
/
v.21
no.1
/
pp.220-225
/
2021
Human population growth rate is an important parameter for real-world planning. Common approaches rely upon fixed parameters like human population, mortality rate, fertility rate, which is collected historically to determine the region's population growth rate. Literature does not provide a solution for areas with no historical knowledge. In such areas, machine learning can solve the problem, but a multitude of machine learning algorithm makes it difficult to determine the best approach. Further, the missing feature is a common real-world problem. Thus, it is essential to compare and select the machine learning techniques which provide the best and most robust in the presence of missing features. This study compares 17 machine learning techniques (base learners and ensemble learners) performance in predicting the human population growth rate of the country. Among the 17 machine learning techniques, random forest outperformed all the other techniques both in predictive performance and robustness towards missing features. Thus, the study successfully demonstrates and compares machine learning techniques to predict the human population growth rate in settings where historical data and feature information is not available. Further, the study provides the best machine learning algorithm for performing population growth rate prediction.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.