DOI QR코드

DOI QR Code

Forecasting Birthrate Change based on Big Data

빅데이터 기반의 출산율 변동 예측

  • Received : 2019.09.24
  • Accepted : 2019.10.15
  • Published : 2019.12.31

Abstract

We empirically analyze the effects of psychological factors, such as the fear of parenting, on fertility rates. An index is calculated based on the share of negative news articles on child care in all social articles from 2000 to 2018. The analysis result shows that as the index increases, the fertility rate after three years falls. This result is repeated in the correlation analysis, simple regression, and VAR analysis. According to Granger causality analysis, it is found that the relation between the index and the fertility rate after three years is not just a simple correlation but a causal relationship. There are differences among age groups. The fertility rate of women in their 20s and 30s shows a significant response to the index, but that of the 40s does not. The index affects the birthrate of first child, but do not affect the birthrate of second or more children. These results are consistent with the intuition that younger women are more likely to be affected by the negative articles about parenting, but not to those who have already experienced childbirth. This study is meaningful in that a significant index for predicting social phenomena is extracted beyond the limited use of news big data such as a simple keyword mention volume monitoring. Also, this big data-based index is a 3-year leading indicator for fertility, which provides the advantage of providing information that helps early detection.

본 연구에서는 육아에 대한 공포 등 심리적 요인이 출산율에 미치는 영향을 실증적으로 분석하였다. 2000년~2018년까지 육아에 대한 부정적인 기사가 전체 사회 기사에서 차지하는 비중을 바탕으로 지표를 산출하였다. 지표 분석 결과, 지표가 증가하면 3년 뒤의 출산율은 떨어지는 것으로 나타났다. 이러한 결과는 상관관계 분석, 단순 회귀분석, VAR 분석에서도 일관적으로 나타났다. 그랜져 인과관계 분석 결과, 지표와 3년 뒤 출산율의 관계는 단순 상관관계가 아닌 인과관계에 있음을 알 수 있었다. 연령대별로도 차이를 보였는데, 20~30대 여성의 출산율은 지표에 유의한 반응을 보였으나, 40대 출산율은 반응을 보이지 않았다. 또한 지표가 상승하면 1아 출산율에는 영향을 미치지만, 2아/3아 이상의 출산율에는 영향을 미치지 않는 것으로 나타났다. 이것은 여성의 나이가 어릴수록 육아에 대한 부정적인 기사에 영향을 많이 받지만, 이미 출산/육아를 경험해본 사람들에게는 큰 영향을 미치지 못한다는 직관과도 일치한다. 본 연구는 뉴스 빅데이터를 단순한 키워드 언급량 변화 모니터링이라는 한정된 용도를 벗어나, 사회 현상을 예측하는데 유의미한 지표를 추출해 냈다는데 의미가 있다. 또한 이러한 빅데이터 기반의 지표는 출산율에 대한 3년의 선행성이 있기 때문에 미리 감지할 수 정보를 제공한다는 장점이 있다.

Keywords

References

  1. Angeles, L. (2010). Demographic Transitions: Analyzing the Effects of Mortality on Fertility. Journal of Population Economics, 23(1), 99-120. https://doi.org/10.1007/s00148-009-0255-6
  2. Arbatli, E. C., Davis, S. J., Ito, A., Miake, N. & Saito, I. (2017). Policy Uncertainty in Japan (No. w23411). National Bureau of Economic Research.
  3. Bachmann, R., Elstner, S. & Sims, E. R. (2013). Uncertainty and Economic Activity: Evidence from Business Survey Data. American Economic Journal: Macroeconomics, 5(2), 217-249. https://doi.org/10.1257/mac.5.2.217
  4. Baker, S. R., Bloom, N. & Davis, S. J. (2016). Measuring Economic Policy Uncertainty. The Quarterly Journal of Economics, 131(4), 1593-1636. https://doi.org/10.1093/qje/qjw024
  5. Choi, J., Jang, J. & Kim, B. (2014). The Determinants for the Preschool's Comprehensive Information Systems: User Resistance Perspective. Informatization Policy, 21(1), 77-98. https://doi.org/10.22693/NIAIP.2014.21.1.077
  6. Del Bono, E., Weber, A. & Winter-Ebmer, R. (2012). Clash of Career and Family: Fertility Decisions after Job Displacement. Journal of the European Economic Association, 10(4), 659-683. https://doi.org/10.1111/j.1542-4774.2012.01074.x
  7. Dickey, D. A. & Fuller, W. A. (1979). Distribution of the Estimators for Autoregressive Time Series with a Unit Root. Journal of the American statistical association, 74(366a), 427-431.
  8. Granger, C. W. (1969). Investigating Causal Relations by Econometric Models and Cross-spectral Methods. Econometrica: Journal of the Econometric Society, 37(3), 424-438. https://doi.org/10.2307/1912791
  9. Granger, C. W., Newbold, P. & Econom, J. (2001). Spurious Regressions in Econometrics. A Companion to Theoretical Econometrics, Blackwell, Oxford, 557-561.
  10. Hamilton, J. D. (1994). Time Series Analysis. Princeton, NJ: Princeton university press.
  11. Hong, J. (2013). The Analysis of the Effectiveness of Governmental Child-care Subsidies. Korea Journal of Population Studies, 36(4), 95-118.
  12. Hong, M. (2009). Information Technology for Aged Welfare-Focus on Gratification of the Users-. Informatization Policy, 16(1), 75-86.
  13. Hong, S. C., Kim, Y. I., Lim, J. Y. & Yeo, M. Y. (2016). Pro-natalist Cash Grants and Fertility: A Panel Analysis. The Korean Economic Review, 32(2), 331-354.
  14. Jurado, K., Ludvigson, S. C. & Ng, S. (2015). Measuring Uncertainty. American Economic Review, 105 (3), 1177-1216. https://doi.org/10.1257/aer.20131193
  15. Kim, M., Lee, W., Lee, H. & Suh, B. (2018). Forecasting the Future Korean Society: A Big Data Analysis on 'Future Society'-related Keywords in News Articles and Academic Papers, Informatization Policy, 21(1), 37-64.
  16. Kim, S., Choi, B., Chung, K., Lee, S., Park, D., Park, I. & Chang, J. (2002). Social and Economic Impact and Long & Short-term Policy for Low Fertility. Korea Institute for Health and Social Affairs.
  17. Kim, S., Kim, M., Lee, Y. Sunwoo, D., Cho, S. & Kim, O. (2003). Research on Population Policy and Inter-governmental Implementation Scheme Development Against Low Fertility. Korea Institute for Health and Social Affairs.
  18. Kunzler, J. (2002). Paths Towards a Modernization of Gender Relations, Policies, and Family Building. Family Life and Family Policies in Europe. Problems and Issues in Comparative Perspective, 2, 252-298.
  19. Langridge, A. T., Nassar, N., Li, J., Jacoby, P. & Stanley, F. J. (2012). The Impact of Monetary Incentives on General Fertility Rates in Western Australia. J Epidemiol Community Health, 66(4), 296-301. https://doi.org/10.1136/jech.2009.100347
  20. Lee, B. (2003). Gender Discrimination and Family Welfare Policy of Low Fertility. National Assembly Library Monthly Magazine, 40(10), 63-79.
  21. Lee, M. & Myung, S. (2015). A Study on the Effectiveness of the Childbirth Promotion Policy, Korean Journal of Local Government & Administration Studies, 29(1), 331-350. https://doi.org/10.18398/kjlgas.2015.29.1.331
  22. Lee, S. (2006). A Study on Impact of the Change in Values on Marriage and Fertility Behaviors. Health and Social Welfare Review, 26(2), 96-140.
  23. Lovenheim, M. F. & Mumford, K. J. (2013). Do Family Wealth Shocks Affect Fertility Choices? Evidence from the Housing Market. Review of Economics and Statistics, 95(2), 464-475. https://doi.org/10.1162/REST_a_00266
  24. Ministry of Women (2002). Statistical Yearbook on Women, Ministry of Women.
  25. Nimark, K. P. (2014). Man-bites-dog Business Cycles. American Economic Review, 104(8), 2320-67. https://doi.org/10.1257/aer.104.8.2320
  26. Shin, Y. (2008). An Analysis of the Effect of Burden of Childcare and Education on Childbirth. Health and Social Welfare Review, 28(2), 103-134 https://doi.org/10.15709/hswr.2008.28.2.103
  27. Sims, C. A. (1980). Macroeconomics and Reality. Econometrica: journal of the Econometric Society, 48(1), 1-48. https://doi.org/10.2307/1912017
  28. Statistics Korea (2018). 2018 Birth Statistics (Finalized). Statistics Korea.