• 제목/요약/키워드: precision stage

검색결과 951건 처리시간 0.037초

Modeling and Multivariable Control of a Novel Multi-Dimensional Levitated Stage with High Precision

  • Hu Tiejun;Kim Won-jong
    • International Journal of Control, Automation, and Systems
    • /
    • 제4권1호
    • /
    • pp.1-9
    • /
    • 2006
  • This paper presents the modeling and multivariable feedback control of a novel high-precision multi-dimensional positioning stage. This integrated 6-degree-of-freedom. (DOF) motion stage is levitated by three aerostatic bearings and actuated by 3 three-phase synchronous permanent-magnet planar motors (SPMPMs). It can generate all 6-DOF motions with only a single moving part. With the DQ decomposition theory, this positioning stage is modeled as a multi-input multi-output (MIMO) electromechanical system with six inputs (currents) and six outputs (displacements). To achieve high-precision positioning capability, discrete-time integrator-augmented linear-quadratic-regulator (LQR) and reduced-order linearquadratic-Gaussian (LQG) control methodologies are applied. Digital multivariable controllers are designed and implemented on the positioning system, and experimental results are also presented in this paper to demonstrate the stage's dynamic performance.

마이크로 스테이지의 유한요소해석 (A Study on the Optimal Structural Design using FEM for Micro Stage)

  • 김재열;곽이구;한재호;김항우;하하변명
    • 한국정밀공학회지
    • /
    • 제19권10호
    • /
    • pp.60-65
    • /
    • 2002
  • For optimal design of micro stage, we measured the displacement of piezoelectric transducer that was based on voltage value. And the micro stage was analyzed using FEM with displacement data including voltage value of piezoelectric transducer. For verification of analysis results, the displacements were measured by using Laser-interferometer. And researchers confirmed to propriety on design of micro stage with FEM, we obtained 3.5% error rate between measurement results and analyzing results.

Parallelogram형 Flexure Hinge 에 의한 Motion Stage 의 최적 설계 (Optimal Design for Parallelogram Type Flexure Hinge)

  • 최주용;엄상인;김정현
    • 한국정밀공학회지
    • /
    • 제32권1호
    • /
    • pp.107-111
    • /
    • 2015
  • This paper proposes an optimal design for a precision motion stage employing a parallelogram flexure hinge. The voltage applied to the piezo element produces motion that is amplified through a 3-stage amplification structure. Especially, instead of the generally used conic section flexure hinge a parallelogram shaped flexure hinge is used that improves the flexibility of the lever. An Finite Element Analysis is performed on each motion stage lever where optimal design was achieved using Response Surface Methodology(RSM).

초정밀 다축 위치제어장치 개발 및 보정에 관한 연구 (A Study on the Development and Compensation of precision Multi-Axis Positioning System)

  • 정상화;차경래
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 추계학술대회 논문집
    • /
    • pp.455-458
    • /
    • 2002
  • In recent years, precision positioning stage is demanded fur some industrial fields such as semi conductor lithography, ultra precision machining and fabricating of nano structure. In this research, precision multi-axis positioning stage, which consists of pzt actuator, flexure, and capacitance gauge, is designed and developed. The performance of it such as 3-axis positioning, characteristic of motion and resolution is verified.

  • PDF

초정밀 스테이지용 스토퍼기구의 개발 (Development of Stopper Mechanism for the Precision Stage with Nanometer Accuracy)

  • 권현규;박창용
    • 한국기계가공학회지
    • /
    • 제11권2호
    • /
    • pp.112-117
    • /
    • 2012
  • This paper presents a new stopper mechanism for precision stage by using the Piezoelectric element actuator. The new stage including a new stopper mechanism has the precision positioning mechanism that was been developed for generation displacements with nanometer accuracy and a millimeter dynamic range simulataneouly. The stage is composed not of the mechanical two stopper but of only one Piezoelectric element actuator. The characteristics for the new stage and the stopper have been evaluated experimentally. As the results, we can know that the linearity error characteristics of stage is 30nm in the $20{\mu}m$ measurement range. In addition, the experimental results are confirmed the possibility of the movement in millimeter range.

6-자유도 초정밀 위치 결정 스테이지의 비선형성 식별을 위한 로스트 모션 해석 (Lost Motion Analysis for Nonlinearity Identification of a 6-DOF Ultra-Precision Positioning Stage)

  • 신현표;문준희
    • 한국정밀공학회지
    • /
    • 제32권3호
    • /
    • pp.263-268
    • /
    • 2015
  • This paper describes lost motion analysis for a novel 6-DOF ultra-precision positioning stage. In the case of flexure hinge based precision positioning stage, lost motion is generated when the displacement of actuator is not delivered completely to the end-effector because of the elasticity of flexure hinge. Consequently, it is need to compute amount of lost motion to compensate the motion or to decide appropriate control method for precision positioning. Lost motion analysis for the vertical actuation unit is presented. The analysis results are presented in two ways: analytic and numerical analyses. It is found that they closely coincide with each other by 1% error. In finite element analysis result, the amount of lost motion is turned out to be about 3%. Although, the amount is not so large, it is necessary procedure to check the lost motion to establish the control method.

$H_{\infty}$ norm을 이용한 6 자유도 정밀스테이지의 모델기반 제어기 설계 (Design of a Model-based Controller for a 6-DOF Precision Positioning Stage using $H_{\infty}$ norm)

  • 문준희;이봉구
    • 한국정밀공학회지
    • /
    • 제27권12호
    • /
    • pp.59-66
    • /
    • 2010
  • We developed a model-based controller for 6-DOF micropositioning of a precision stage using $H_{\infty}$ norm, For the design, a state-space system of the mathematical model of the stage is derived In developing the controller, weighting functions are effectively designed in consideration of upper bounds of the sensitivity of the control loop and control input. Step responses in open and closed loop control are provided to verify the micropositioning performance of the stage. By applying the developed controller we prove that the inverse of the weighting function forms the upper bound of the control loop. It is also found that the controller makes the same sensitivity shape with all the DOFs due to the use of $H_{\infty}$ norm. The developed controller is expected to be applied successfully for industrial use.