• Title/Summary/Keyword: precise shearing

Search Result 14, Processing Time 0.018 seconds

The realtime measurement of burrs on sheet metal using the semiconductor laser (반도체 레이저를 이용한 박판 버의 실시간 측정)

  • 홍남표;신홍규;김헌영;김병희
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.10a
    • /
    • pp.107-110
    • /
    • 2003
  • The sheet metal shearing process is normally used in the precision elements such as semi-conductor components. In precision elements, burrs usually reduce the quality of machined parts and cause interference, jamming and misalignment during assembly procedures and because of their sharpness, they can be safety hazard to personnel. Furthermore, not only burrs are hard to predict and avoid, but also deburring, the process of removing burrs, is time-consuming and costly. In order to get the burr-free parts, therefore, we developed the precise burr measuring system using the laser. Using the X-Y precious table, we used vertical measuring method. Through the laser measurement system, we gain the minute analog signal, so this signal was amplified by the electric circuit. Finally, we gained the realtime burr data using A/D converter, PC. By introducing the novel laser measuring method which employing vertical measurement mechanism, we could get fast and precious burr data. Through the experiments, the accuracy of the developed system is proved. The burr height measured during the punching process can be used for automatic deburring and in-situ aligning.

  • PDF

Mechanical behaviors of concrete-filled rectangular steel tubular under pure torsion

  • Ding, Fa-xing;Sheng, Shi-jing;Yu, Yu-jie;Yu, Zhi-wu
    • Steel and Composite Structures
    • /
    • v.31 no.3
    • /
    • pp.291-301
    • /
    • 2019
  • Pure torsion loading conditions were not frequently occurred in practical engineering, but the torsional researches were important since it's the basis of mechanical property researches under complex loading. Then a 3D finite element model with precise material constitutive models was established, and the effectiveness was verified with test data. Parametric studies with varying factors as steel yield strength, concrete strength and sectional height-width ratio, were performed. Internal stress state and the interaction effect between encased steel tube and the core concrete were analyzed. Results indicated that due to the confinement effect between steel tube and core concrete, the torsional strength of CFT columns was greatly improved comparing to plain concrete columns. The steel ratio would greatly influence the torque share between the steel tube and the core concrete. Then the torsional strength calculation formulas for core concrete and the whole CFT column were proposed. The proposed formula could be simpler and easier to use with guaranteed accuracy. Related design codes were more conservative than the proposed formula, but the proposed formula presented more satisfactory agreement with experimental results.

Development of Constitutive Equation for Soils Under Cyclic Loading Conditions (反復荷重을 받는 흙의 構成關係式 開發)

  • Jang, Byeong-Uk;Song, Chang-Seop
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.34 no.1
    • /
    • pp.41-48
    • /
    • 1992
  • Various soil behaviors usually occurring in the geotechnical problems, such as, cutting and embankments, stability of slope, seepage, consolidations, shearing failures and liquefaction, should be predicted and analyzed in any way. An approach of these predictions may be followed by the development of the constitutive equations as first and subsequently solved by numerical methods. The purpose of this paper is develop the constitutive equation of sands uder monotonic or cyclic loadings. The constitutive equation which is based on elasto-plastic theory, modified anisotropic consolidated stress parameter by Sekiguchi et al and Pender's theory is derived. And the equation is included a new stress parameter, hardening function, Bauschinger's effects and Pender's theory. The model is later evaluated and confirmed the validity by the test data of Ottawa sand, Banwol sand Hongseong sand. The following conclustions may be drawn: 1. The consititutive equation which is based on elasto-plastic theory, modified anisotropic consolidated stress parpameter by Sekiguchi et al and Pender's theory is derived. The equation in included a new stress parameter, hardening function, Bauschinger's effect and Pender's theory. 2. For Ottawa sand, the result of the constitutive equation shows a better agreement than that of Oka et al. The result of axial strain agrees well with the tested data. However, the result of horizontal strain is little bit off for the cyclic loadings or large stress. It is thought that the deviation may be improved by considering Poisson's ratio and precise measurement of shear modulus. 3. Banwol sand is used for the strain and stress tests with different relative densitites and confining pressures. The predeicted result shows a good agreement with the tested data because the required material parameters were directly measurd and determined form this laboratory. 4. For Hongseong sand, the tests under same amplitude of cyclic deviatoric stress shows a similar result with the tested data in absolute strain. It shows the acute shape of turning point because the sine wave of input is used in the test but the serrated wave in prediction.

  • PDF

A Study on the Secondary Optimization Analysis based on the Result of Primary Structure Analysis for the Die Thickness (금형두께에 대한 1차 구조해석 결과를 기반으로 한 2차 최적화 해석에 관한 연구)

  • Lee, Jong-Bae;Kim, Sang-Hyun;Woo, Chang-Ki
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.6
    • /
    • pp.3448-3454
    • /
    • 2014
  • Generally existing structure analysis was applied to elastic analysis basically in practice. Considering the nonlinear material and the nonlinear geometric to be a more precise analysis, for this reason, The necessity for a structual analysis have been constantly required. Therefore, after optimization is performed, designed a simple model which is applied the principle of nonlinear in this study, a structural analysis of existing experienced users, have a aims at presenting theory and a method in order to perform anyone the analysis easily. In this study, the proposed model applied to die ribs, Regarding the shear load, less strain and stress was generated but strength was sufficient. The initial strain and stress was reconfigured to fit the size and shape, A hyperstudy in conjunction with Abaqus with nonlinear structural analysis, revealed an acceptable maximum and minimum range of stress and under the conditions of minimum strain, the plate made with a constant increment. In the experimental models, the plate thickness was given a power of 40 Newton, according to the thickness of the press die through an iterative process. When the stress and strain was applied to the die thickness, 7-8mm thickness could be obtained by optimizing.