• 제목/요약/키워드: precipitation radar

검색결과 208건 처리시간 0.028초

Quantitative Estimation of the Precipitation utilizing the Image Signal of Weather Radar

  • Choi, Jeongho;Lim, Sanghun;Han, Myoungsun;Kim, Hyunjung;Lee, Baekyu
    • Journal of Multimedia Information System
    • /
    • 제5권4호
    • /
    • pp.245-256
    • /
    • 2018
  • This study estimated rainfall information more effectively by image signals through the information system of weather radar. Based on this, we suggest the way to estimate quantitative precipitation utilizing overlapped observation area of radars. We used the overlapped observation range of ground hyetometer observation network and radar observation network which are dense in our country. We chose the southern coast where precipitation entered from seaside is quite frequent and used Sungsan radar installed in Jeju island and Gudoksan radar installed in the southern coast area. We used the rainy season data generated in 2010 as the precipitation data. As a result, we found a reflectivity bias between two radar located in different area and developed the new quantitative precipitation estimation method using the bias. Estimated radar rainfall from this method showed the apt radar rainfall estimate than the other results from conventional method at overall rainfall field.

레이더기반 다중센서활용 강수추정기술의 개발 (Development of Radar-Based Multi-Sensor Quantitative Precipitation Estimation Technique)

  • 이재경;김지현;박혜숙;석미경
    • 대기
    • /
    • 제24권3호
    • /
    • pp.433-444
    • /
    • 2014
  • Although the Radar-AWS Rainrate (RAR) calculation system operated by Korea Meteorological Administration estimated precipitation using 2-dimensional composite components of single polarization radars, this system has several limitations in estimating the precipitation accurately. To to overcome limitations of the RAR system, the Korea Meteorological Administration developed and operated the RMQ (Radar-based Multi-sensor Quantitative Precipitation Estimation) system, the improved version of NMQ (National Mosaic and Multi-sensor Quantitative Precipitation Estimation) system of NSSL (National Severe Storms Laboratory) for the Korean Peninsula. This study introduced the RMQ system domestically for the first time and verified the precipitation estimation performance of the RMQ system. The RMQ system consists of 4 main parts as the process of handling the single radar data, merging 3D reflectivity, QPE, and displaying result images. The first process (handling of the single radar data) has the pre-process of a radar data (transformation of data format and quality control), the production of a vertical profile of reflectivity and the correction of bright-band, and the conduction of hydrid scan reflectivity. The next process (merger of 3D reflectivity) produces the 3D composite reflectivity field after correcting the quality controlled single radar reflectivity. The QPE process classifies the precipitation types using multi-sensor information and estimates quantitative precipitation using several Z-R relationships which are proper for precipitation types. This process also corrects the precipitation using the AWS position with local gauge correction technique. The last process displays the final results transformed into images in the web-site. This study also estimated the accuracy of the RMQ system with five events in 2012 summer season and compared the results of the RAR (Radar-AWS Rainrate) and RMQ systems. The RMQ system ($2.36mm\;hr^{-1}$ in RMSE on average) is superior to the RAR system ($8.33mm\;hr^{-1}$ in RMSE) and improved by 73.25% in RMSE and 25.56% in correlation coefficient on average. The precipitation composite field images produced by the RMQ system are almost identical to the AWS (Automatic Weather Statioin) images. Therefore, the RMQ system has contributed to improve the accuracy of precipitation estimation using weather radars and operation of the RMQ system in the work field in future enables to cope with the extreme weather conditions actively.

수치모델에서 레이더 자료동화가 강수 예측에 미치는 영향 (The Effect of Radar Data Assimilation in Numerical Models on Precipitation Forecasting)

  • 이지원;민기홍
    • 대기
    • /
    • 제33권5호
    • /
    • pp.457-475
    • /
    • 2023
  • Accurately predicting localized heavy rainfall is challenging without high-resolution mesoscale cloud information in the numerical model's initial field, as precipitation intensity and amount vary significantly across regions. In the Korean Peninsula, the radar observation network covers the entire country, providing high-resolution data on hydrometeors which is suitable for data assimilation (DA). During the pre-processing stage, radar reflectivity is classified into hydrometeors (e.g., rain, snow, graupel) using the background temperature field. The mixing ratio of each hydrometeor is converted and inputted into a numerical model. Moreover, assimilating saturated water vapor mixing ratio and decomposing radar radial velocity into a three-dimensional wind vector improves the atmospheric dynamic field. This study presents radar DA experiments using a numerical prediction model to enhance the wind, water vapor, and hydrometeor mixing ratio information. The impact of radar DA on precipitation prediction is analyzed separately for each radar component. Assimilating radial velocity improves the dynamic field, while assimilating hydrometeor mixing ratio reduces the spin-up period in cloud microphysical processes, simulating initial precipitation growth. Assimilating water vapor mixing ratio further captures a moist atmospheric environment, maintaining continuous growth of hydrometeors, resulting in concentrated heavy rainfall. Overall, the radar DA experiment showed a 32.78% improvement in precipitation forecast accuracy compared to experiments without DA across four cases. Further research in related fields is necessary to improve predictions of mesoscale heavy rainfall in South Korea, mitigating its impact on human life and property.

정량적 강수 예측을 위한 레이더 비강수 정보의 자료동화 (Data Assimilation of Radar Non-precipitation Information for Quantitative Precipitation Forecasting)

  • 김유신;민기홍
    • 한국지구과학회지
    • /
    • 제44권6호
    • /
    • pp.557-577
    • /
    • 2023
  • 본 연구에서는 레이더 관측 영역 내에 강수 에코(echo)가 없는 지역을 비강수 정보라고 정의하고 자료 동화에 활용하였다. 비강수 정보는 레이더로 관측할 수 있는 최대 영역 내에서 강수에 의한 에코가 나타나지 않고 레이더에서 관측할 수 없을 정도로 약한 강수나 구름 입자가 있거나, 강수 자체가 없다는 것을 의미한다. 기존의 레이더 자료를 동화한 연구가 강수에 의한 반사도와 시선속도를 동화하여 모델 내의 강수를 만들어내는 것에 초점을 두었다면, 본 연구에서는 에코가 없다는 것도 하나의 정보로 고려하고 이를 동화함으로써 모델 내에서 잘못 예측한 강수를 억제하였다. 비강수 정보를 자료동화에 적용시키기 위해 레이더 비강수 정보를 수상체와 상대습도로 변환하는 관측 연산자를 제시하고 이를 Weather Research and Forecasting (WRF) 모델의 자료동화 시스템인 WRF Data Assimilation system (WRFDA)에 적용하였다. 또한 비강수 정보를 효과적으로 활용하기 위한 레이더 자료의 처리 방법을 제시하였다. 비강수 정보가 모델 내에서 잘못 예측한 강수를 억제할 수 있는지 확인하기 위해 단일 관측실험을 수행하였으며 비강수 정보가 수상체와 습도 그리고 기온을 낮춤으로써 대류가 억제될 수 있는 환경을 만들었다. 비강수 정보의 동화 효과를 실제 사례에 적용한 2013년 7월 23일 대류 사례 실험을 통해 9시간 예측을 수행하여 결과를 분석하였다. 레이더 비강수 정보를 추가로 동화한 실험이 비강수 정보를 제외한 실험보다 Fractional Skill Score (FSS)가 증가하고 False Alarm Ratio (FAR)는 감소하여 모델의 강수 예측성을 향상시켰다.

Precipitation Structure on Ground-Based Radar

  • Ha, Kyung-Ja;Oh, Hyun-Mi
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2002년도 Proceedings of International Symposium on Remote Sensing
    • /
    • pp.358-360
    • /
    • 2002
  • In order to find horizontal and vertical precipitation structure in Korean peninsula, we use ground-based radar, and Automatic Weather Station (AWS) data. Radar data was selected for rain events in the Pusan and Jindo in Korea, during the spring and summer season of 2002. AWS point gauge measurements are analyzed as part of spatial structure of precipitation. TRMM/PR and ground-based radar is used vertical correlation. The results showed, as expected that the correlation decreased rapidly with distance.

  • PDF

레이더 반사도 유형분류 알고리즘을 이용한 청주 부근에서 관측된 강우시스템의 사례 분석 (Case Study of the Precipitation System Occurred Around Cheongju Using Convective/Stratiform Radar Echo Classification Algorithm)

  • 남경엽;이정석;남재철
    • 대기
    • /
    • 제15권3호
    • /
    • pp.155-165
    • /
    • 2005
  • The characteristics of six precipitation systems occurred around Cheongju in 2002 are analyzed after the convective/stratiform radar echo classification using radar reflectivity from the Meteorological Research Institute"s X-band Doppler weather radar. The Biggerstaff and Listemaa (2000) algorithm is applied for the classification and reveals a physical characteristics of the convective and stratiform rain diagnosed from the three-dimensional structure of the radar reflectivity. The area satisfying the vertical profile of radar reflectivity is well classified, while the area near the radar site and the topography-shielded area show a mis-classification. The seasonal characteristics of the precipitation system are also analyzed using the contoured frequency by altitude diagrams (CFADs). The heights of maximum reflectivity are 4 km and 5.5 km in spring and summer, respectively, and the vertical gradient of radar reflectivity from 1.5 km to the melting layer in spring is larger than in summer.

차량레이더 자료 기반 강수정보 추정 기법 (Precipitation Information Retrieval Method Using Automotive Radar Data)

  • 장봉주;임상훈
    • 대한토목학회논문집
    • /
    • 제40권3호
    • /
    • pp.265-271
    • /
    • 2020
  • 첨단 차량에서 가장 중요한 장비 중 하나인 차량레이더는 일반적으로 자동차와 같은 객체의 속도와 범위를 감지하는데 사용된다. 본 논문에서는 객체감지 이외에 차량레이더 자료를 이용하여 강수 정보를 추정하는 방법을 제안한다. 제안된 방법은 레이더 수신신호의 감쇠 정도가 강수 강도에 따라 다르다는 사실과 시공간적으로 짧은 관측에서는 강수의 분포가 일정하다는 가정에 근거한다. 본 논문은 차량 레이더를 이용하여 강수정보 추정에 대한 타당성을 평가하는데 목적이 있다. 실제 주행 중 제안 된 방법의 실현 가능성을 검증하기 위해, 다양한 강수 사상의 각 시간 세그먼트에 대한 강수정보 추정 방법이 적용되었다. 주행 현장실험의 결과로부터 제안된 방법이 다양한 강우 유형에서 강수 정보 추정에 적합하다는 것을 알 수 있었다.

Radar Quantitative Precipitation Estimation using Long Short-Term Memory Networks

  • Thi, Linh Dinh;Yoon, Seong-Sim;Bae, Deg-Hyo
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2020년도 학술발표회
    • /
    • pp.183-183
    • /
    • 2020
  • Accurate quantitative precipitation estimation plays an important role in hydrological modelling and prediction. Instantaneous quantitative precipitation estimation (QPE) by utilizing the weather radar data is a great applicability for operational hydrology in a catchment. Previously, regression technique performed between reflectivity (Z) and rain intensity (R) is used commonly to obtain radar QPEs. A novel, recent approaching method which might be applied in hydrological area for QPE is Long Short-Term Memory (LSTM) Networks. LSTM networks is a development and evolution of Recurrent Neuron Networks (RNNs) method that overcomes the limited memory capacity of RNNs and allows learning of long-term input-output dependencies. The advantages of LSTM compare to RNN technique is proven by previous works. In this study, LSTM networks is used to estimate the quantitative precipitation from weather radar for an urban catchment in South Korea. Radar information and rain-gauge data are used to evaluate and verify the estimation. The estimation results figure out that LSTM approaching method shows the accuracy and outperformance compared to Z-R relationship method. This study gives us the high potential of LSTM and its applications in urban hydrology.

  • PDF

Observation of Precipitation by the TRMM Precipitation Radar

  • Okamoto Ken'ichi;Tanaka Tasuku;Iguchi Toshio
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2004년도 Proceedings of ISRS 2004
    • /
    • pp.178-181
    • /
    • 2004
  • The Tropical Rainfall Measuring Mission (TRMM) is an US-Japan joint space mission to observe tropical and subtropical rainfall. This satellite is equipped with the world's first precipitation radar that operates at 13.8 GHz. We introduce the TRMM precipitation radar (PR) system, along with the PR data processing and analysis algorithms, and some observation results obtained by the TRMM PR. It is concluded that the TRMM PR can give quite useful rainfall data for the understanding of global climate changes, meteorology, climatology, atmospheric science, and also for the studies of satellite communication.

  • PDF

Estimation of spatial distribution of precipitation by using of dual polarization weather radar data

  • Oliaye, Alireza;Bae, Deg-Hyo
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2021년도 학술발표회
    • /
    • pp.132-132
    • /
    • 2021
  • Access to accurate spatial precipitation in many hydrological studies is necessary. Existence of many mountains with diverse topography in South Korea causes different spatial distribution of precipitation. Rain gauge stations show accurate precipitation information in points, but due to the limited use of rain gauge stations and the difficulty of accessing them, there is not enough accurate information in the whole area. Weather radars can provide an integrated precipitation information spatially. Despite this, weather radar data have some errors that can not provide accurate data, especially in heavy rainfall. In this study, some location-based variable like aspect, elevation, plan curvature, profile curvature, slope and distance from the sea which has most effect on rainfall was considered. Then Automatic Weather Station data was used for spatial training of variables in each event. According to this, K-fold cross-validation method was combined with Adaptive Neuro-Fuzzy Inference System. Based on this, 80% of Automatic Weather Station data was used for training and validation of model and 20% was used for testing and evaluation of model. Finally, spatial distribution of precipitation for 1×1 km resolution in Gwangdeoksan radar station was estimates. The results showed a significant decrease in RMSE and an increase in correlation with the observed amount of precipitation.

  • PDF