DOI QR코드

DOI QR Code

Data Assimilation of Radar Non-precipitation Information for Quantitative Precipitation Forecasting

정량적 강수 예측을 위한 레이더 비강수 정보의 자료동화

  • Yu-Shin Kim (School of Meteorology, University of Oklahoma) ;
  • Ki-Hong Min (Department of Atmospheric Sciences, Kyungpook National University)
  • Received : 2023.10.24
  • Accepted : 2023.12.18
  • Published : 2023.12.31

Abstract

This study defines non-precipitation information as areas with weak precipitation or cloud particles that radar cannot detect due to weak returned signals, and suggests methods for its utilization in data assimilation. Previous studies have demonstrated that assimilating radar data from precipitation echoes can produce precipitation in model analysis and improve subsequent precipitation forecast. However, this study also recognizes the non-precipitation information as valuable observation and seeks to assimilate it to suppress spurious precipitation in the model analysis and forecast. To incorporate non-precipitation information into data assimilation, we propose observation operators that convert radar non-precipitation information into hydrometeor mixing ratios and relative humidity for the Weather Research and Forecasting Data Assimilation system (WRFDA). We also suggest a preprocessing method for radar non-precipitation information. A single-observation experiment indicates that assimilating non-precipitation information fosters an environment conducive to inhibiting convection by lowering temperature and humidity. Subsequently, we investigate the impact of assimilating non-precipitation information to a real case on July 23, 2013, by performing a subsequent 9-hour forecast. The experiment that assimilates radar non-precipitation information improves the model's precipitation forecasts by showing an increase in the Fractional Skill Score (FSS) and a decrease in the False Alarm Ratio (FAR) compared to experiments in which do not assimilate non-precipitation information.

본 연구에서는 레이더 관측 영역 내에 강수 에코(echo)가 없는 지역을 비강수 정보라고 정의하고 자료 동화에 활용하였다. 비강수 정보는 레이더로 관측할 수 있는 최대 영역 내에서 강수에 의한 에코가 나타나지 않고 레이더에서 관측할 수 없을 정도로 약한 강수나 구름 입자가 있거나, 강수 자체가 없다는 것을 의미한다. 기존의 레이더 자료를 동화한 연구가 강수에 의한 반사도와 시선속도를 동화하여 모델 내의 강수를 만들어내는 것에 초점을 두었다면, 본 연구에서는 에코가 없다는 것도 하나의 정보로 고려하고 이를 동화함으로써 모델 내에서 잘못 예측한 강수를 억제하였다. 비강수 정보를 자료동화에 적용시키기 위해 레이더 비강수 정보를 수상체와 상대습도로 변환하는 관측 연산자를 제시하고 이를 Weather Research and Forecasting (WRF) 모델의 자료동화 시스템인 WRF Data Assimilation system (WRFDA)에 적용하였다. 또한 비강수 정보를 효과적으로 활용하기 위한 레이더 자료의 처리 방법을 제시하였다. 비강수 정보가 모델 내에서 잘못 예측한 강수를 억제할 수 있는지 확인하기 위해 단일 관측실험을 수행하였으며 비강수 정보가 수상체와 습도 그리고 기온을 낮춤으로써 대류가 억제될 수 있는 환경을 만들었다. 비강수 정보의 동화 효과를 실제 사례에 적용한 2013년 7월 23일 대류 사례 실험을 통해 9시간 예측을 수행하여 결과를 분석하였다. 레이더 비강수 정보를 추가로 동화한 실험이 비강수 정보를 제외한 실험보다 Fractional Skill Score (FSS)가 증가하고 False Alarm Ratio (FAR)는 감소하여 모델의 강수 예측성을 향상시켰다.

Keywords

Acknowledgement

이 논문은 2021학년도 경북대학교 연구년 교수 연구비에 의하여 연구되었습니다.

References

  1. Albers, S.C., McGinley, J.A., Birkenheuer, D.L., and Smart, J.R., 1996, The Local Analysis and Prediction System (LAPS): Analyses of Clouds, Precipitation, and Temperature. Weather and Forecasting, 11, 273-287. https://doi.org/10.1175/1520-0434(1996)011<0273:TLAAPS>2.0.CO;2
  2. Bae, J.-H., and Min, K.-H., 2022, Forecast Characteristics of Radar Data Assimilation Based on the Scales of Precipitation Systems. Remote Sensing, 14(3), 605.
  3. Barker, D. M., Huang, X.-Y., Liu, Z., Auligne, T., Zhang, X., Rugg, S., and coauthors, 2012, The Weather Research and Forecasting Model's Community Variational/Ensemble Data Assimilation System: WRFDA. Bulletin of American Meteorological Society, 93, 831-843. https://doi.org/10.1175/BAMS-D-11-00167.1
  4. Chandramouli, K., Wang, X., Johnson, A., and Otkin, J., 2022, Online nonlinear bias correction in ensemble Kalman filter to assimilate GOES-R all-sky radiances for the analysis and prediction of rapidly developing supercells, Journal of Advances in Modeling Earth Systems, 14, e2021MS002711.
  5. Degelia, S. K., Wang. X., Wang, Y., and Johnson, A., 2023, Assimilation of GOES-16 ABI All-Sky Radiance Observations in RRFS Using EnVar: Methodology, System Development, and Impacts for a Severe Convective Event. Monthly Weather Review, 151, 2739-2758. https://doi.org/10.1175/MWR-D-23-0057.1
  6. Gao, J., and Stensrud, D.J., 2012, Assimilation of Reflectivity Data in a Convective-Scale, Cycled 3DVAR Framework with Hydrometeor Classification. Journal of Atmospheric Sciences, 69, 1054-1065. https://doi.org/10.1175/JAS-D-11-0162.1
  7. Gasperoni, N. A., Wang, X., and Wang, Y., 2020, A comparison of methods to sample model errors for convection-allowing ensemble forecasts in the setting of multiscale initial conditions produced by the GSI-based EnVar assimilation system, Monthly Weather Review, 148, 1177-1203. https://doi.org/10.1175/MWR-D-19-0124.1
  8. Gasperoni, N. A., Wang, X., and Wang, Y., 2022, Using a Cost-Effective Approach to Increase Background Ensemble Member Size within the GSI-Based EnVar System for Improved Radar Analyses and Forecasts of Convective Systems. Monthly Weather Review, 150, 667-689. https://doi.org/10.1175/MWR-D-21-0148.1
  9. Gasperoni, N. A., Wang, X., and Wang, Y., 2023, Valid Time Shifting for an Experimental RRFS Convection-Allowing EnVar Data Assimilation and Forecast System: Description and Systematic Evaluation in Real Time. Monthly Weather Review, 151, 1229-1245.
  10. Hu, M., Xue, M., Gao, J., and Brewster, K., 2006, 3DVAR and Cloud Analysis with WSR-88D Level-II Data for the Prediction of the Fort Worth, Texas, Tornadic Thunderstorms. Part II: Impact of Radial Velocity Analysis via 3DVAR. Monthly Weather Review, 134, 699-721. https://doi.org/10.1175/MWR3093.1
  11. Johnson, A., Wang, X., Carley, J. R., and Karstems, C., 2015, A Comparison of Multiscale GSI-Based EnKF and 3DVar Data Assimilation Using Radar and Conventional Observations for Midlatitude Convective-Scale Precipitation Forecasts. Mon. Wea. Rev., 143, 3087-3108. https://doi.org/10.1175/MWR-D-14-00345.1
  12. Johnson, A., Wang, X., & Jones, T. A., 2022, Impacts of assimilating GOES-16 ABI channels 9 and 10 clear air and cloudy radiance observations with additive inflation and adaptive observation error in GSI-EnKF for a case of rapidly evolving severe supercells, Journal of Geophysical Research: Atmospheres, 127, e2021JD036 157.
  13. Kessler, E., 1969, On the Distribution and Continuity of Water Substance in Atmospheric Circulation. Meteorological Monograph, No. 32, 88.
  14. Korolev, A., and Isaac, G.A., 2006, Relative Humidity in Liquid, Mixed-Phase, and Ice Clouds. Journal of Atmospheric Sciences, 63, 2865-2880. https://doi.org/10.1175/JAS3784.1
  15. Lee, Y.-H., and Min, K.-H., 2019, High-resolution modeling study of an isolated convective storm over Seoul Metropolitan area. Meteorology and Atmospheric Physics, 131, 1549-1564. https://doi.org/10.1007/s00703-019-0657-2
  16. Lee, J.-W., Min, K.-H., and Lim, K.-S., 2022, Comparing 3DVAR and hybrid radar data assimilation methods for heavy rain forecast. Atmospheric Research, 270, 106062.
  17. Lee, J.-W., Min, K.-H., Lee, Y.-H., and Lee, G., 2020, X-Net based radar data assimilation study over the Seoul metropolitan area. Remote Sensing, 12(5), 893.
  18. Lin, Y.-L., Farley, R.D., and Orville, H.D., 1983, Bulk parameterization of the snow field in a cloud model. Journal of Applied Meteorology and Climatology, 22, 1065-1092. https://doi.org/10.1175/1520-0450(1983)022<1065:BPOTSF>2.0.CO;2
  19. Parrish, D.F., and Derber, J.C., 1992, The National Meteorological Center's Spectral Statistical-Interpolation Analysis System. Monthly Weather Review, 120, 1747-1763. https://doi.org/10.1175/1520-0493(1992)120<1747:TNMCSS>2.0.CO;2
  20. Roberts, N.M., and Lean, H.W., 2008, Scale-Selective Verification of Rainfall Accumulations from High-Resolution Forecasts of Convective Events. Monthly Weather Review, 136, 78-97. https://doi.org/10.1175/2007MWR2123.1
  21. Saha, S., and Coauthors, 2014, The NCEP Climate Forecast System Version 2. Journal of Climate, 27, 2185-2208. https://doi.org/10.1175/JCLI-D-12-00823.1
  22. Skamarock, W., Klemp, J.B., Dudhia, J., Gill, D.O., Barker, D., Duda, M., Huang, G.X., and Wang, W., 2008, A Description of the Advanced Research WRF Version 3. NCAR/TN-475+STR, 125pp.
  23. Souto M.J., Balseiro, C.F., Perez-Munuzuri, V., Xue, M., and Brewster, K., 2003, Impact of Cloud Analysis on Numerical Weather Prediction in the Galician Region of Spain. Journal of Applied Meteorology and Climatology, 42, 129-140. https://doi.org/10.1175/1520-0450(2003)042<0129:IOCAON>2.0.CO;2
  24. Sun, J., and Wang, H., 2013, Radar Data Assimilation with WRF 4D-Var. Part II: Comparison with 3D-Var for a Squall Line over the U.S. Great Plains. Mon. Wea. Rev., 141, 2245-2264. https://doi.org/10.1175/MWR-D-12-00169.1
  25. Wattrelot, E., Caumont, O., and Mahfouf, J.-F., 2014, Operational Implementation of the 1D+3D-Var Assimilation Method of Radar Reflectivity Data in the AROME Model. Monthly Weather Review, 142, 1852-1873. https://doi.org/10.1175/MWR-D-13-00230.1
  26. Wang, H., Sun, J., Fan, S., and Huang, X.-Y., 2013, Indirect Assimilation of Radar Reflectivity with WRF 3D-Var and Its Impact on Prediction of Four Summertime Convective Events. Journal of Applied Meteorology and Climatology, 52, 889-902. https://doi.org/10.1175/JAMC-D-12-0120.1
  27. Wang, H., Sun, J., Zhang, X., Huang, X.-Y., and Auligne, T., 2013, Radar Data Assimilation with WRF 4D-Var. Part I: System Development and Preliminary Testing. Monthly Weather Review, 141, 2224-2244. https://doi.org/10.1175/MWR-D-12-00168.1
  28. Wang, Y., and Wang, X., 2016, Direct Assimilation of Radar Reflectivity without Tangent Linear and Adjoint of the Nonlinear Observation Operator in the GSI-Based EnVar System: Methodology and Experiment with the 8 May 2003 Oklahoma City Tornadic Supercell. Mon. Wea. Rev., 145, 1447-1471 https://doi.org/10.1175/MWR-D-16-0231.1
  29. Xiao, Q., Kuo, Y.-H., Sun, J., Lee, W.-C., Lim, E., Guo, Y.-R., and Barker, D.M., 2005, Assimilation of Doppler Radar Observations with a Regional 3DVAR System: Impact of Doppler Velocities on Forecasts of a Heavy Rainfall Case. Journal of Applied Meteorology and Climatology, 44, 768-788. https://doi.org/10.1175/JAM2248.1
  30. Xiao, Q., Kuo, Y.-H., Sun, J., Lee, W.-C., Barker, D.M., and Lim, E., 2007, An approach of radar reflectivity data assimilation and its assessment with the inland QPF of Typhoon Rusa (2002) at landfall. Journal of Applied Meteorology and Climatology, 46, 14-22. https://doi.org/10.1175/JAM2439.1
  31. Yang, Y., and Wang, X., 2023, A Comparison of 3DEnVar and 4DEnVar for Convective-Scale Direct Radar Reflectivity Data Assimilation in the Context of Filter and Smoother. Mon. Wea. Rev., early online release.
  32. Ye, B.-Y., 2013, Quality control of radar moment data by combining moment-based fuzzy logic algorithm and radar signal processing. M.S. thesis, KNU 72pp.
  33. Yussouf, N., Manwell, E. R., Wicker, L. J., Wheatley, D. M., and Stensrud, D. J., 2013, The Ensemble Kalman Filter Analyses and Forecasts of the 8 May 2003 Oklahoma City Tornadic Supercell Storm Using Single-and Double-Moment Microphysics Schemes. Mon. Wea. Rev., 141, 3385-3412. https://doi.org/10.1175/MWR-D-12-00237.1
  34. Zhang, Y., Clothiaux, E. E., and Stensrud, D. J., 2022, Correlation structures between satellite all-sky infrared brightness temperatures and the atmospheric state at storm scales, Advances in Atmospheric Sciences, 39(5), 714-732. https://doi.org/10.1007/s00376-021-0352-3