DOI QR코드

DOI QR Code

Precipitation Information Retrieval Method Using Automotive Radar Data

차량레이더 자료 기반 강수정보 추정 기법

  • Jang, Bong-Joo (Korea Institute of Civil Engineering and Building Technology) ;
  • Lim, Sanghun (Korea Institute of Civil Engineering and Building Technology)
  • 장봉주 (한국건설기술연구원 국토보전연구본부) ;
  • 임상훈 (한국건설기술연구원 국토보전연구본부)
  • Received : 2020.04.13
  • Accepted : 2020.04.24
  • Published : 2020.06.01

Abstract

Automotive radar that is one of the most important equipment in high-tech vehicles, is commonly used to detect the speed and range of objects such as cars. In this paper, in addition to objects detection, a method of retrieving precipitation information using the automotive radar data is proposed. The proposed method is based on the fact that the degree of attenuation of the returned radar signal differs depending on the precipitation intensity and the assumption that the distribution of precipitation is constant in short spatial and temporal observation. The purpose of this paper is to assesses the possibility of retrieving precipitation information using a vehicle radar. To verify the feasibility of the proposed method during actual driving, a method of estimating precipitation information for each time segment of various precipitation events was applied. From the results of driving field experiments, it was found that the proposed method is suitable for estimating precipitation information in various rainfall types.

첨단 차량에서 가장 중요한 장비 중 하나인 차량레이더는 일반적으로 자동차와 같은 객체의 속도와 범위를 감지하는데 사용된다. 본 논문에서는 객체감지 이외에 차량레이더 자료를 이용하여 강수 정보를 추정하는 방법을 제안한다. 제안된 방법은 레이더 수신신호의 감쇠 정도가 강수 강도에 따라 다르다는 사실과 시공간적으로 짧은 관측에서는 강수의 분포가 일정하다는 가정에 근거한다. 본 논문은 차량 레이더를 이용하여 강수정보 추정에 대한 타당성을 평가하는데 목적이 있다. 실제 주행 중 제안 된 방법의 실현 가능성을 검증하기 위해, 다양한 강수 사상의 각 시간 세그먼트에 대한 강수정보 추정 방법이 적용되었다. 주행 현장실험의 결과로부터 제안된 방법이 다양한 강우 유형에서 강수 정보 추정에 적합하다는 것을 알 수 있었다.

Keywords

References

  1. Bertoldo, S., Lucianaz, C. and Allegretti, M. (2018). "On the use of a 77 GHz automotive radar as a microwave rain gauge." Engineering, Technology & Applied Science Research, Vol. 8, No. 1, pp. 2356-2360. https://doi.org/10.48084/etasr.1755
  2. Gourova, R., Krasnov, O. and Yarovoy A. (2017). "Analysis of rain clutter detections in commercial 77 GHz automotive radar." 2017 European Radar Conference (EURAD), Nuremberg, pp. 25-28.
  3. Jang, B. J., Jung, I. T., Chong, K. S., Sung, H. K. and Lim, S. H. (2019). "Rainfall observation system using automotive radar sensor for ADAS based driving safety." 2019 IEEE Intelligent Transportation Systems Conference (ITSC), Auckland, New Zealand, pp. 305-310.
  4. Kim, Y. G., Lee, S. H. and Kim, B. S. (2018). "Measurement of rainfall using sensor signal generated from vehicle rain sensor." Journal of the Korean Society of Civil Engineers, KSCE, Vol. 38, No. 2, pp. 227-235, DOI: 10.12652/KSCE.2018.38.2.0227 (in Korean).
  5. Korea Institute of Civil Engineering and Building Technology (KICT) (2019). Development of driving environment observation, prediction and safety technology based on automotive sensors, final report (in Korean).
  6. Roh, C. G. and Park, B. J. (2019). "Analysis of the effect of rainfall on ADAS sensor." International Journal of Advanced Engineering and Management Research, Vol. 4, No. 1, pp. 77-84.
  7. Stock, K. (2018). Self-driving cars can handle neither rain nor sleet nor snow, Bloomberg Business week, Available at: https://www.bloomberg.com/news/articles/2018-09-17/self-driving-cars-still-can-t-handle-bad-weather (Accessed: September 17, 2018).
  8. Ziebinski, A., Cupek, R., Erdogan, H. and Waechter, S. (2016) "A survey of ADAS technologies for the future perspective of sensor fusion." ICCCI 2016: Computational Collective Intelligence, Springer, Vol. 9876, pp. 135-146, DOI: https://doi.org/10.1007/978-3-319-45246-3_13.