• Title/Summary/Keyword: precast structure

Search Result 246, Processing Time 0.029 seconds

Test for the influence of socket connection structure on the seismic performance of RC prefabricated bridge piers

  • Yan Han;Shicong Ding;Yuxiang Qin;Shilong Zhang
    • Earthquakes and Structures
    • /
    • v.25 no.2
    • /
    • pp.89-97
    • /
    • 2023
  • In order to obtain the impact of socket connection interface forms and socket gap sizes on the seismic performance of reinforced concrete (RC) socket prefabricated bridge piers, quasi-static tests for three socket prefabricated piers with different column-foundation connection interface forms and reserved socket gap sizes, as well as to the corresponding cast-in-situ reinforced concrete piers, were carried out. The influence of socket connection structure on various seismic performance indexes of socket prefabricated piers was studied by comparing and analyzing the hysteresis curve and skeleton curve obtained through the experiment. Results showed that the ultimate failure mode of the socket prefabricated pier with circumferential corrugated treatment at the connection interface was the closest to that of the monolithic pier, the maximum bearing capacity was slightly less than that of the cast-in-situ pier but larger than that of the socket pier with roughened connection interface, and the displacement ductility and accumulated energy consumption capacity were smaller than those of socket piers with roughened connection interface. The connection interface treatment form had less influence on the residual deformation of socket prefabricated bridge piers. With the increase in the reserved socket gap size between the precast pier column and the precast foundation, the bearing capacity of the prefabricated socket bridge pier component, as well as the ductility and residual displacement of the component, would be reduced and had unfavorable effect on the energy dissipation property of the bridge pier component.

A Study on the Flowability Properties of the High Flowing Self-Compacting Concrete for Members of Bridge Precast (프리캐스트 교량부재용 초유동 자기충전 콘크리트의 유동 특성에 관한 연구)

  • Choi, Yun Wang;Kim, Yong Jic;Kang, Hyun Jin
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.1A
    • /
    • pp.155-163
    • /
    • 2008
  • On the construction site with trends of large scale, high rise and specialization, testing construction of high performance concrete, superior to conventional concrete, is continued to increase. For bridge construction, application of full staging method is gradually decreasing due to noise, dust, and prolonged construction period. Recently, precast construction, which is optimized to urban environment and shorter work period, gains popularity significantly. In bridge structure, overcrowding arrangement of bar is used to ensure its safety. For the manufacturing of overcrowding arrangement of bar, High flowing self-compacting concrete, which is superior to conventional concrete in flowability and compacting property, should be implemented. In this study, the application of blast-furnace slag and fly ash to binary and ternary blended system on the High flowing self-compacting concrete for bridge structure with overcrowding arrangement of bar is evaluated by flowability in accordance with the first class regulations of Japan Society of Civil Engineering (JSCE).

Analytical Study on Hybrid Precast Concrete Beam-Column Connections (하이브리드 프리캐스트 보-기둥 접합부의 해석적 연구)

  • Choi, Chang-Sik;Kim, Seung-Hyun;Choi, Yun-Cheul;Choi, Hyun-Ki
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.6
    • /
    • pp.631-639
    • /
    • 2013
  • Non-linear finite element analysis for newly developed precast concrete details for beam-to-column connection which can be used in moderate seismic region was carried out in this study. Developed precast system is based on composite structure and which have steel tube in column and steel plate in beam. Improving cracking strength of joint under reversed cyclic loading, joint area was casted with ECC (Engineering Cementitious Composites). Since this newly developed precast system have complex sectional properties and newly developed material, new analysis method should be developed. Using embedded elements and models of non-linear finite element analysis program ABAQUS previously tested specimens were successfully analyzed. Analysis results show comparatively accurate and conservative prediction. Using finite element model, effect of axial load magnitude and flexural strength ratio were investigated. Developed connection have optimized performance under axial load of 10~20% of compressive strength of column. Plastic hinge was successfully developed with flexural strength ratio greater than 1.2.

Time Reduction Effect Analysis of SMART Frame for Long Span and Heavy Loaded Logistics Buildings (SMART 프레임의 공기단축 효과 분석 - 대형 물류창고 사례 -)

  • Kim, Doyeong;Ji, Woomin;Lim, Jeeyoung
    • Journal of the Korea Institute of Building Construction
    • /
    • v.22 no.5
    • /
    • pp.519-530
    • /
    • 2022
  • As online commerce increases, the construction of large logistics buildings worldwide is exploding. Most of these buildings have the characteristics of long span and heavy loaded and use precast concrete components, a pin joint structure, for rapid construction. However, due to construction safety and structural stability requirements, the pin joint structure has many limitations in terms of the erection of the PC member, which increases the time and cost. A structural frame connected with steel joints between precast concrete components, called a SMART frame, has been developed, which addresses these constraints and risks. However, the effect of the appllication of a SMART frame on the time aspect has not been analysed. The study is a time reduction effect analysis of a SMART frame for long span and heavy loaded logistics buildings. For this study, the authors select a case site erected using existing PC components, and compare the time reduction with the SMART frame erection simulations. Through this analysis, it was found that a time reduciton about 4 months, approximately 48% of the conventional PC installation period could be achieved. If the SMART frame is applied when carrying out future large-scale logistics building projects, it can be expected to have the effect of significantly shortening the construction period compared to the conventional method.

Performance Analysis of SMART Frame Applied to RC Column-Beam Structures (RC 라멘조에 SMART Frame 적용 시 효용성 분석)

  • Cho, Wonhyun;Lim, Chaeyeon;Jang, Duk Bea;Kim, Sunkuk
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2015.11a
    • /
    • pp.168-169
    • /
    • 2015
  • SMART Frame is a composite precast concrete structure system to deliver the advantages of both steel frame and reinforced concrete. Many studies have established to date that SMART Frame is more advantageous than conventional frame-type structure in terms of structural stability, constructability, economic viability as well as reduction of construction schedule. However, such studies have focused primarily on wall-type or flat slab-type apartment housing structures, failing to include Rahmen structures in their scope. Accordingly, this study aims to analyze the benefits of potential application of SMART Frame to RC Rahmen structures. As the structural stability and constructability of SMART Frame is already proven, this study reviews its benefits from the perspective of cost reduction. Conclusion of this study will be used subsequently in predicting the benefits of SMART Frame when it is adapted to RC Rahmen structures.

  • PDF

A Study on the Similitude of Precast Concrete Panel Structure Using one-third Scale Subassemblage Model (1/3 축적 모형실험에 의한 프리캐스트 콘크리트 판구조의 상사성에 관한 연구)

  • 윤재진
    • Magazine of the Korea Concrete Institute
    • /
    • v.4 no.3
    • /
    • pp.123-134
    • /
    • 1992
  • 본연구는 실물크기의 프리캐스트 콘크리트 판구조물의 부분구조체를 모형화하여 실험한 결과를 분석한 것이다. 구조물의 역학적 특성과 파괴성상을 파악하기 위한 구조실험은 실물크기의 구조물과 부재로써 실시하는 것이 가장 좋은 방법이지만, 이것은 치수가 크므로 공간적으로 제한을 받고 많은 시간과 비용을 필요로 하기 때문에 모형실험을 이용하게 된다. 이러한 모형실험을 최소한의 오차범위내에서 원형실험과 같은 재현하고 예측하도록 실험을 준비하는 데에는 상사법칙이 필요하게 된다. 모형은 무엇보다도 원형과의 응력-변형도 관계 등 구성재료에 대한 상사요구조건을 만족시키는 것이 중요하지만, 본 연구의 대상은 1/3축척으로써 기하학적인 요소와 사용재료에 대한 강도의 상사성만을 고려한 모형이다. 본 연구에서는 이러한 모형구조물의 거동을 원형실험결과와 비교하여 상사성 확보의 문제와 가능성을 조사하였다.

Structural Performance Evaluation of Bolt Connection for Half-sphere Joint between PHC Pile and Steel Column (강재기둥-PHC 파일 간 반구형 접합부(HAT Joint)의 볼트 연결에 대한 구조성능평가)

  • Oh, Jintak;Kim, Sang-Bong;Kim, Young-Sik;Ju, Young K.
    • Journal of Korean Association for Spatial Structures
    • /
    • v.15 no.4
    • /
    • pp.65-72
    • /
    • 2015
  • To overcome the weakness of spread foundation in large space structure, the research of precast pile for replace spread foundation have been conducted. The new type of joint between PHC pile and steel column is named HAT Joint(Hollow hAlf-sphere cast-sTeel Joint). It connected PHC Pile by bolt that verification of bolt connection should be accomplished. In this paper, pull-out test and flexural performance for HAT Joint to verifying the bolt connection is explained. As a result, the pull-out and flexural capacities of bolt were checked to use in real structure. Furthermore, the equation of pull-out strength was proposed.

Bolted end plate connections for steel reinforced concrete composite structures

  • Li, Xian;Wu, Yuntian;Mao, Weifeng;Xiao, Yan;Anderson, J.C.;Guo, Yurong
    • Structural Engineering and Mechanics
    • /
    • v.24 no.3
    • /
    • pp.291-306
    • /
    • 2006
  • In order to improve the constructability and meanwhile ensure excellent seismic behavior, several innovative composite connection details were conceived and studied by the authors. This paper reports experimental results and observations on seismic behavior of steel beam bolted to reinforced concrete column connections (bolted RCS or BRCS). The proposed composite connection details involve post tensioning the end plates of the steel beams to the reinforced concrete or precast concrete columns using high-strength steel rods. A rational design procedure was proposed to assure a ductile behavior of the composite structure. Strut-and-tie model analysis indicates that a bolted composite connection has a favorable stress transfer mechanism. The excellent capacity and behavior were then validated through five full-scale beam to column connection model tests.

Improvement Plan for Connecting Form of PC Member -Focused on Apartment Buildings- (PC부재의 접합부 거푸집의 개선방안 연구 -공동주택을 중심으로-)

  • Kim, Seon-Hyung;Choi, Jae-Hwi;Kim, Sun-Kuk;Lee, Dong-Hoon
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2010.05a
    • /
    • pp.9-12
    • /
    • 2010
  • Conventional apartment building projects have favored wall slab structure for the ease of construction and economic viability. However, wall slab structure, consisting of bearing walls, makes remodeling a difficult challenge. In addition, as the amendment to the Building Act in November, 2005 incentivized easy-to-remodel Rahmen structure design for apartment building in terms of floor area ratio and the number of stories, were are seeing more use of PC construct method in apartment building projects gradually. However, PC construction method requires complex connections between beams and columns, making it difficult to install and remove formwork. Furthermore, it is not possible to reuse forms after removal, generating lots of construction wastes, and it is necessary to install new forms again when the size of connection changes in line with modification of column cross-section. Researchers in Korea and elsewhere in the world have focused on structural performance of connection in PC construction method, with little attention to alternative approaches to improving connection forms for PC construction method. Accordingly, this research aims to study an approach to improving connection forms for PC construction method.

  • PDF

Development of Beam-Column Connection for The New Apartment Structural System (장수명 공동주택용 보-기둥 접합부 시공방법 개발)

  • Yoon, Tae-Ho;Hong, Won-Kee;Kim, Sun-Kuk;Park, Seon-Chee;Yun, Dai-Young
    • KIEAE Journal
    • /
    • v.10 no.6
    • /
    • pp.145-151
    • /
    • 2010
  • Bearing wall system was used extensively in most multi-residential apartment buildings in Korea. However, bearing wall apartments have the lack of architectural plan flexibility, remodelling-incompatible, causing serious economic losses in terms of construction waste. Recently, many researchers have studied the use of Rahmen structure as a potential alternative. The beam-column connection in the paper for long-life apartment housing forms connection of a Rahmen structure utilizing the advantages of steel and reinforced concrete. In addition, reduction of cast-in place concrete and construction schedule is expected by using precast concrete. Reduction effect of quantity decreased construction costs and $CO_2$ emission of key construction materials. However, verifying the feasibility of new construction method entails numerous challenges. Accordingly, the purpose of this study is to analyze the construction feasibility of sleeve, coupler, and pressure welding connections for long-life apartment building structure. A 3D modeling software was used to perform the analysis, and a real scale model was created to verify the results of construction feasibility. By verifying the construction feasibility of beam-column connections, this study will contribute to the efficient application of these methods on construction sites.