• Title/Summary/Keyword: prebiotics

Search Result 118, Processing Time 0.027 seconds

Insights into the Roles of Prebiotics and Probiotics in the Large Intestine (대장에서 prebiotics와 probiotics 역할에 대한 조명)

  • An, Su Jin;Kim, Jae Yeong;Choi, In Soon;Cho, Kwang Keun
    • Journal of Life Science
    • /
    • v.23 no.10
    • /
    • pp.1295-1303
    • /
    • 2013
  • According to facts revealed up until the present, there are a total of 68 known phyla on earth, including 55 phyla of bacteria and 13 phyla of archaea. The human large intestine has 9 phyla of microorganisms, which is a relatively lower diversity compared to the general environments of soil or sea. The diversity of intestinal microorganisms is affected by the characteristics of the host (genetic background, sex, age, immune system, and gut motility), the diet (non-digestible carbohydrates, fat, prebiotics, probiotics), and the intake of antibiotics, which in turn have an effect on energy storage processes, gene expressions, and even metabolic diseases like obesity. Probiotics are referred to as living microorganisms that improve the intestinal microbiota and contribute to the health of the host; in addition, probiotics usually comprise lactic acid bacteria. Recently, bacteriotherapy using probiotics has been utilized to treat sicknesses like diarrhea and irritable bowel syndrome. Prebiotics are a food ingredient which can selectively adjust intestinal microorganisms and which comprise inulin, fructooligosaccharides, galactooligosaccharides, and lactulose. In recent days, attention has been paid to the use of dietary cellulose in the large intestine and the production of short chain fatty acids (short-chain fatty acids) in relation to obesity and anticancer. More research into microorganisms in the large intestine is necessary to identify specific microorganism species, which are adjusted by diverse non-digestible carbohydrates, prebiotics, and probiotics in the large intestine and to understand the connection between sicknesses and metabolites like short chain fatty acids produced by these microorganism species.

Microflora Management in the Gastrointestinal Tract of Piglets

  • Metzler, B.;Bauer, E.;Mosenthin, R.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.18 no.9
    • /
    • pp.1353-1362
    • /
    • 2005
  • The stressful physiological and environmental conditions around weaning often promote the proliferation of pathogens in the digestive tract of piglets resulting in diarrhoea and reduced daily weight gain. Typical dietary practices to maintain growth performance and health have led to an increased use of antimicrobial growth promoters. Due to the advanced ban of antibiotics in pig production, new concepts have been developed to secure animal health and growth performance, feed efficiency, and product quality as well. Several naturally occurring compounds seem to beneficially affect the composition and activity of the microflora in the gastrointestinal tract (GIT) of pigs. These are, among others, organic acids, probiotics, prebiotics, and enzymes. Organic acids are already widely used, especially in pigs, due to their positive effects on GIT health and growth performance. Probiotics have been shown to be effective against diarrhoea though effects may be dependent on diet composition and environmental conditions. Prebiotics may influence composition and activity of the intestinal microflora. Additionally, pre- and probiotics may exert positive influences on immune response, whereas enzymes may enhance feed digestibility by breaking down anti-nutritional factors. In the following, the focus will be directed to the role of organic acids, probiotics, prebiotics, and feeding enzymes as potential modulators of GIT health.

Effects of Synbiotics Containing Anaerobic Microbes and Prebiotics on In vitro Fermentation Characteristics and In situ Disappearance Rate of Fermented-TMR

  • Lee, Shin-Ja;Shin, Nyeon-Hak;Chu, Gyo-Moon;Lee, Sung-Sill
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.24 no.11
    • /
    • pp.1577-1586
    • /
    • 2011
  • This study was carried out to estimate effects of synbiotics containing anaerobic microorganisms and prebiotics on in vitro fermentation characteristics and in situ disappearance rate of fermented total mixed ration (F-TMR). For the in vitro trial, ninety vinyl bags were prepared to analyze temperature, pH, ammonia concentration, microbial growth rate and short chain fatty acid concentration. For the in situ trial, one hundred twenty nylon bags were prepared to analyze dry matter (DM), acid detergent fiber (ADF) and neutral detergent fiber (NDF) disappearance rate. Treatments consisted of a basal diet (US) with prebiotics and probiotics from anaerobic mold (MS), bacteria (BS), yeast (YS) or compound (CS). It was found that temperatures at 14 and 21 days were significantly higher (p<0.05) in the YS and CS than in the others. The pH at 21 days was lower in the CS than in the US. The synbiotic treatments had significantly increased (p<0.05) ammonia concentration at 21 days. The DM disappearance at 72 h was significantly higher (p<0.05) in the MS and CS than in the others. ADF and NDF disappearance rate tended to increase at a rate similar to the DM disappearance rate. Therefore, this study suggests that synbiotics (probiotics with prebiotics) may partially help the quality of fermentation and digestibility of TMR (MS and CS) as fiber disappearance.

Optimization of the Growth Rate of Probiotics in Fermented Milk Using Genetic Algorithms and Sequential Quadratic Programming Techniques

  • Chen, Ming-Ju;Chen, Kun-Nan;Lin, Chin-Wen
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.16 no.6
    • /
    • pp.894-902
    • /
    • 2003
  • Prebiotics (peptides, N-acetyglucoamine, fructo-oligosaccharides, isomalto-oligosaccharides and galactooligosaccharides) were added to skim milk in order to improve the growth rate of contained Lactobacillus acidophilus, Lactobacillus casei, Bifidobacterium longum and Bifidobacterium bifidum. The purpose of this research was to study the potential synergy between probiotics and prebiotics when present in milk, and to apply modern optimization techniques to obtain optimal design and performance for the growth rate of the probiotics using a response surface-modeling technique. To carry out response surface modeling, the regression method was performed on experimental results to build mathematical models. The models were then formulated as an objective function in an optimization problem that was consequently optimized using a genetic algorithm and sequential quadratic programming approach to obtain the maximum growth rate of the probiotics. The results showed that the quadratic models appeared to have the most accurate response surface fit. Both SQP and GA were able to identify the optimal combination of prebiotics to stimulate the growth of probiotics in milk. Comparing both methods, SQP appeared to be more efficient than GA at such a task.

The Role and Clinical Value of Probiotics (Probiotics의 역할과 임상적 가치)

  • Rheu, Kyoung-Hwan;Yoon, Seoung-Woo
    • Journal of Korean Traditional Oncology
    • /
    • v.10 no.1
    • /
    • pp.75-86
    • /
    • 2005
  • Disease associated with microorganisms are far from resolved by current therapeutics. One of effective approach to health maintenance and disease control is the use of dietary bacterial and carbohydrate supplements. This comprises use of probiotics and prebiotics. Probiotics mean the live microorganisms, which when administered in adequate amounts confer a health benefit on the host. Prebiotics mean a nondigestible food ingredient that beneficially affects the host by selectively stimulating the growth and/or activity of one or a limited number of bacteria that can Improve the host health. Especially, probiotics has the relation which is close with innate immunity and adaptive immunity. And probiotics has the clinical value with many disease like lactose intolerance, constipation, acute gastroenteritis, food hypersensitivity and allergy, atopic dermatitis, crohn's disease, rheumatoid arthritis, pelvic radiotherapy, intestinal inflammation and chemical exposure, colon cancer, inhibitory effect of Helicobacter pylori and lowering the level of cholesterol. We use jointly korean medicine and probiotics and it has the more therapeutic effect in the many disease.

  • PDF

Studies on the Biological Activity of Synbiotics: A Review (신바이오틱스의 생리활성에 관한 연구 고찰)

  • Yoon, Jin A;Shin, Kyung-Ok
    • The Korean Journal of Food And Nutrition
    • /
    • v.31 no.3
    • /
    • pp.319-327
    • /
    • 2018
  • This paper defines the common features of synbiotics based on the definition of probiotics and prebiotics, and reviews the effectiveness of synbiotic food. The concept of synbiotics is defined as 'a mixture of prebiotics and probiotics that have a beneficial effect on the host, as a dietary supplement that alters living organisms in the gastrointestinal tract and improves their survival.' Synbiotic food contains ingredients with beneficial microbes that are expected to improve interactions between microbial and useful substances. Synbiotic foods may have anti-cancer and immune system-boosting effects. Improved digestion, healthier bowel movements, and overall increased intestinal health has been reported were reported after increasing the healthy microorganisms within the intestinal tract. In addition, depending on the type of food containing the symbiotic ingredients, more consistent weight control, improvement of cardiovascular health, and lower blood glucose levels may also be expected. Unlike previous studies, this review of synbiotics has shown that it is necessary for synergistic effects to take place among microorganisms and components to be further studied. Further research is needed on the safety and ingestion of microorganisms contained in synbiotics.

Recent Advances in Animal Feed Additives such as Metabolic Modifiers, Antimicrobial Agents, Probiotics, Enzymes and Highly Available Minerals - Review -

  • Wenk, C.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.13 no.1
    • /
    • pp.86-95
    • /
    • 2000
  • Animal feed additives are used worldwide for many different reasons. Some help to cover the needs of essential nutrients and others to increase growth performance, feed intake and therefore optimize feed utilization. They can positively effect technological properties and product quality. The health status of animals with a high growth performance is a predominant argument in the choice of feed additives. In many countries the use of feed additives is more and more questioned by the consumers: substances such as antibiotics and $\beta$-agonists with expected high risks are banned in animal diets. Therefore, the feed industry is highly interested in valuable alternatives which could be accepted by the consumers. Probiotics, prebiotics, enzymes and highly available minerals as well as herbs can be seen as alternatives to metabolic modifiers and antibiotics.

Prebiotic Effects of Poly-Gamma-Glutamate on Bacterial Flora in Murine Gut

  • Jin, Hee-Eun;Choi, Jae-Chul;Lim, Yong Taik;Sung, Moon-Hee
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.2
    • /
    • pp.412-415
    • /
    • 2017
  • Prebiotics improve the growth or activities of specific microbial genera and species in the gut microbiota in order to confer health benefits to the host. In this study, we investigated the effect of poly-gamma-glutamate (${\gamma}-PGA$) as a prebiotic on the gut microbiota of mice and the organ distributions of ${\gamma}-PGA$ in mice. Pyrosequencing analysis for 16S rRNA genes of bacteria indicated that oral administration of ${\gamma}-PGA$ increased the abundance of Lactobacillales while reducing the abundance of Clostridiales in murine guts. It is suggested that oral administration of ${\gamma}-PGA$ can be helpful for modulating the gut microbiota as a prebiotic.

Use of Prebiotics, Probiotics and Synbiotics in Clinical Immunonutrition

  • Bengmark, Stig
    • Preventive Nutrition and Food Science
    • /
    • v.7 no.3
    • /
    • pp.332-345
    • /
    • 2002
  • It is a recent observation that about 80 per cent of the body's immune system is localized in the gastrointestinal tract. This explains to a large extent why eating right is important for the modulation the immune response and prevention of disease. In addition it is increasingly recognized that the body has an important digestive system also in the lower gastrointestinal tract where numerous important substances are released by microbial enzymes and absorbed. Among these substances are short chain fatty acids, amino acids, various carbohydrates, poly-amines, growth factors, coagulation factors, and many thousands of antioxidants, not only traditional vitamins but numerous flavonoids, carotenoids and similar plant- and vegetable produced antioxidants. Also consumption of health-promoting bacteria (probiotics) and vegetable fibres (prebiotics) from numerous sources are known to have strong health-promoting influence. It has been calculated that the intestine harbours about 300,000 genes, which is much more than the calculated about 60,000 for the rest of the human body, indicating a till today totally unexpected metabolic activity in this part of the GI tract. There are seemingly several times more active enzymes in the intestine than in the rest of the body, ready to release hundred thousand or more of substances important for our health and well-being. In addition do the microbial cells produce signal molecules similar to cytokines but called bacteriokines and nitric oxide, with provide modulatory effects both on the mucosal cells, the mucosa- associated lymphoid system (MALT) and the rest of the immune system. Identification of various fermentation products, and often referred to as synbiotics, studies of their role in maintaining health and well-being should be a priority issue during the years to come.