DOI QR코드

DOI QR Code

Effects of Synbiotics Containing Anaerobic Microbes and Prebiotics on In vitro Fermentation Characteristics and In situ Disappearance Rate of Fermented-TMR

  • Lee, Shin-Ja (Division of Applied Life Science (BK21 Program), Graduate School of Gyeongsang National University, IALS) ;
  • Shin, Nyeon-Hak (Division of Applied Life Science (BK21 Program), Graduate School of Gyeongsang National University, IALS) ;
  • Chu, Gyo-Moon (Swine Science and Technology Center, Gyeongnam National University of Science and Technology) ;
  • Lee, Sung-Sill (Division of Applied Life Science (BK21 Program), Graduate School of Gyeongsang National University, IALS)
  • Received : 2011.03.09
  • Accepted : 2011.08.21
  • Published : 2011.11.01

Abstract

This study was carried out to estimate effects of synbiotics containing anaerobic microorganisms and prebiotics on in vitro fermentation characteristics and in situ disappearance rate of fermented total mixed ration (F-TMR). For the in vitro trial, ninety vinyl bags were prepared to analyze temperature, pH, ammonia concentration, microbial growth rate and short chain fatty acid concentration. For the in situ trial, one hundred twenty nylon bags were prepared to analyze dry matter (DM), acid detergent fiber (ADF) and neutral detergent fiber (NDF) disappearance rate. Treatments consisted of a basal diet (US) with prebiotics and probiotics from anaerobic mold (MS), bacteria (BS), yeast (YS) or compound (CS). It was found that temperatures at 14 and 21 days were significantly higher (p<0.05) in the YS and CS than in the others. The pH at 21 days was lower in the CS than in the US. The synbiotic treatments had significantly increased (p<0.05) ammonia concentration at 21 days. The DM disappearance at 72 h was significantly higher (p<0.05) in the MS and CS than in the others. ADF and NDF disappearance rate tended to increase at a rate similar to the DM disappearance rate. Therefore, this study suggests that synbiotics (probiotics with prebiotics) may partially help the quality of fermentation and digestibility of TMR (MS and CS) as fiber disappearance.

Keywords

References

  1. AOAC. 1995. Official method of analysis. 16th edn. Association of Official Analytical Chemists, Washington, DC.
  2. Bauchop, T. 1981. The anaerobic fungi in rumen fibre digestion. Agric. Environ. 6:339-348. https://doi.org/10.1016/0304-1131(81)90021-7
  3. Barnett, A. J. G. 1954. Silage fermentation. pp. 4-5. Butterworths Scientific Publication, Lonton.
  4. Cao, Y., Y. Cai, T. Hirakubo, H. Fukui and H. Matsuyama. 2010. Fermentation characteristics and microorganism composition of total mixed ration silage with local food by-products in different season. Anim. Sci. J. 82:259-266.
  5. Chaney, A. L. and E. P. Marbacch. 1962. Modified reagents for determination of urea and ammonia. Clin. Chem. 8:130-132.
  6. Cheng, K. J., C. W. Forsberg, H. Minato and J. W. Costerto. 1991. Microbial ecology and physiology of feed degradation within the rumen. Physiological Aspects of Digestion and Metabolism in Ruminants. pp. 595-624
  7. Choct, M. 2009. Managing gut health through nutrition. Br. Poult. Sci. 50:9-15. https://doi.org/10.1080/00071660802538632
  8. Driehuis, F., S. J. W. H. Oude Elferink and P. G. Van Wikselaar. 2001. Fermentation characteristics and aerobic stability of grass silage inoculated with Lactobacillus buchneri, with or without homofermentative lactic acid bacteria. Grass Forage Sci. 56:330-343. https://doi.org/10.1046/j.1365-2494.2001.00282.x
  9. Duncan, D. B. 1955. Multiple range and multiple F tests. Int. Biom. Soc. 11:1-42.
  10. Filya, I. 2003. The effect of Lactobacillus buchneri, with or without homofermentative lactic acid bacteria, on the fermentation, aerobic stability, and ruminal degradability of wheat, sorghum, and maize silages. J. Appl. Microbiol. 95:1080-1086. https://doi.org/10.1046/j.1365-2672.2003.02081.x
  11. Gibson, G. R. and B. M. Roberfroi. 1995. Dietary modulation of the human colonic microbiota: introducing the concept of prebiotics. J. Nutr. 125:1401-1412.
  12. Gomez-Alarcon, R. A., D. Dudas and J. T. Hube. 1990. Influence of Aspergillus oryzae on rumen and total tract digestion of dietary components. J. Dairy Sci. 73:703-710. https://doi.org/10.3168/jds.S0022-0302(90)78723-1
  13. Graham, H. L., W. Lowgre, D. Pettersson and P. Aman. 1988. Effect of enzyme supplementation on digestion of a barley/pollards-based pig diet. Nutr. Rep. Int. 38:1073-1079.
  14. Ha, J. K., S. S. Lee, Y. S. Moon and C. H. Kim. 2005. Advanced ruminant nutrition physiology. pp. 151-387.
  15. Holdman, L. V., E. P. Coto and W. E. C. Moor. 1977. Anaerobe laboratory manual 4th edn. Virginia Polytechnic Institute and State University, Blackburg, Virginia, USA. pp. 1-156.
  16. Inglis, G. D., L. J. Yanke, L. M Kawchuk and T. A. Mcallister. 1999. The influence of bacterial inoculants on the microbial ecology of aerobic spoilage of barley silage. Can. J. Microbiol. 45:77-87 https://doi.org/10.1139/w98-207
  17. Kellems, R. O., A. Lagerstedt and M. V. Wallentine. 1990. Effect of feeding Aspergillus oryzae fermentation extract or Aspergillus oryzae plus yeast culture plus mineral and vitamin supplement on performance of Holstein cows during a complete lactation. J. Dairy Sci. 73:2922-2928. https://doi.org/10.3168/jds.S0022-0302(90)78980-1
  18. Kelly, D. 1998. Probiotics in young and newborn animals. J. Anim. Feed Sci. 7:15-23.
  19. Kim, J. U. and J. S. Park. 1997. Useful for industrial microorganisms. Classification, characteristic and industrial use of yeast. J. Microbiol. Biotechnol. 10:26-33.
  20. Kung, L., J. M. R. Stokes and C. J. Lin. 2003. Silage additives. In: Silage Science and Technology (Ed. D. R. Buxton, R. E. Muck and J. H. Harrison). American Society of Agronomy, Crop Science Society of America Inc., Soil Science Society of America Inc. Publications, Madison, WI. pp. 305-360.
  21. Li, D. Y., S. S. Lee, N. J. Choi, S. Y. Lee, H. G. Sung, J. Y. Ko, S. G. Yun and J. K. Ha. 2003. Effects of feeding system on rumen fermentation parameters and nutrient digestibility in Holstein steers. Asian-Aust. J. Anim. Sci. 16:1482-1486. https://doi.org/10.5713/ajas.2003.1482
  22. Martin, S. A. and D. J. Nisbet. 1990. Effects of Aspergillus oryzae fermentation extract on fermentation of amino acids, bermudagrass and starch by mixed ruminal microorganisms in vitro. J. Anim. Sci. 68:2142-2149.
  23. Martinsson, K. 1991. A comparison between formic acid and an inoculant for the preservation of grass silage for dairy cows. Swedish J. Agric. Res. 21:121-130.
  24. McCullough, M. 1991. Feeding strategies for the dairy herd require careful selection. Feedstuffs. November 18: 14-50.
  25. McDonald, P. 1981. Clostridia. The biochemistry of silage. John Wiley and Sons. Ltd. Pitman Press, Bath, England. pp. 62-76.
  26. National Research Council. 2001. Nutrient requirements of dairy cattle. 7th rev. Edn. National Academies Press, Washington, DC, USA.
  27. Ok, J. U., S. M. Lee, S. J. Lee, J. H. Lim, T. W. Kang, H. Y. Jung, Y. H. Moon and S. S. Lee. 2006. Effect of yeast addition in rice straw silage fermentation. J. Anim. Sci. Technol. 48:691-698. https://doi.org/10.5187/JAST.2006.48.5.691
  28. Orskov, E. R. and I. Mcdonald. 1979. The estimation of protein degradability in the rumen from incubation measurements weighted according to rate of passage. J. Agric. Sci. 92:499-503. https://doi.org/10.1017/S0021859600063048
  29. Pettersson, D., H. Graham and P Amen. 1989. Enzyme supplementation of broiler chickens. Anim. Prod. 51:399-404.
  30. Ranjit, N. K. and L Kung. 2000. The effect of Lactobacillus buchneri, Lactobacillus plantarum, or a chemical preservative on the fermentation and aerobic stability of corn silage. J. Dairy Sci. 83:526-535. https://doi.org/10.3168/jds.S0022-0302(00)74912-5
  31. Roper, K. B. and D. I. Fennell. 1965. The Genus Aspergillus. The Williams and Wilkins Co., Baltimore, MD. pp 357-404.
  32. Rose, A. H. 1980. Fent research on industrially important strains of Saccharomyces cerevisiae. In: Biology and Activities of Yeasts (Ed. F. A. Skinner, S. M. Passmore and R. R. Danenport). The Society for Applied Bacteriology Symposium Series 9,103. Academic Press, London. UK.
  33. SAS Institute Inc. 1999. User's guide: Statistics version 8 edn. SAS Institute Inc Cary, North Carolina.
  34. Stokes, M. R. 1992. Effects of an enzyme mixture, an inoculant, and their interaction on silage fermentation and dairy production. J. Dairy Sci. 75:764-773. https://doi.org/10.3168/jds.S0022-0302(92)77814-X
  35. Van Keuren, R. W. and W. W. Heineman. 1962. Study of a nylon bag technique for in vivo estimation of froage disappearance rate. J. Anim. Sci. 21:340-345.
  36. Van Soest, P. J., J. B. Robertson and B. A. Lewis. 1991. Methods for fiber, neutral detergent fiber, and non starch polysaccharides in relation to animal nutrition. J. Dairy Sci. 74:3583-3597. https://doi.org/10.3168/jds.S0022-0302(91)78551-2
  37. Ward, R. T. 2000. Fermentation analysis: use and Interpretation. In Proceeding. Tri-State Dairy Nutrition Conference, Ft. Wayne, IN. pp. 117-136.
  38. Weinberg, Z. G. and R. E. Muck. 1996. New trends and opportunities in development and use of inoculants for silage. FEMS Microbiol. Rev. 19:53-68.
  39. Weinberg, Z. G., G. Szakacs, G. Ashbell and Y. Hen. 1999. The effect of Lactobacillus buchneri and L. plantarum, applied at ensiling, on the ensiling fermentation and aerobic stability of wheat and sorghum silages. J. Ind. Microbiol. Biotechnol. 23:218-222. https://doi.org/10.1038/sj.jim.2900726
  40. Whiter, A. G. and L Kung. 2001. The effect of a dry or liquid application of Lactobacillus plantarum MTD1 on the fermentation of alfalfa silage. J. Dairy Sci. 84:2195-2202. https://doi.org/10.3168/jds.S0022-0302(01)74666-8
  41. Williams, P. E. V. and C. J. Newbold. 1990. Rumen probiosis. The effects of novel microorganisms on rumen fermentation and ruminant productivity. In: Recent Advances in Animal Nutrition (Ed. W. Haresign and D. J. A. Cole). Buttenvorths, London, UK. p. 211.
  42. Williams, P. E. V., C. A. G. Tait, G. M. Innes and C. J. Newbold. 1991. Effects of the inclusion of yeast culture (Saccharomyces cerevisiae plus growth medium) in the diet of dairy cows on milk yield and forage degradation and fermentation patterns in the rumen of steers. J. Anim. Sci. 69:3016-3026.
  43. Zhao, T., M. P. Doyle, B. G. Harmon, C. A. Brown and P. O. Mueller. 1998. Reduction of carriage of enterohemorrhagic Escherichia coli O157:H7 in cattle by inoculation with probiotic bacteria. J. Clin. Microbiol. 36:641-647.

Cited by

  1. Effects of Anthelmintic Plant Extracts on Ruminal Fermentation Characteristics, Bacterial Diversity and Methane Production in vitro vol.48, pp.3, 2014, https://doi.org/10.14397/jals.2014.48.3.113
  2. species pp.1525-3163, 2019, https://doi.org/10.1093/jas/skz030
  3. Effects of holes in plastic film on the storage losses in total mixed ration silage in round bales vol.3, pp.4, 2011, https://doi.org/10.1093/tas/txz132
  4. Effects of supplementation levels of Allium fistulosum L. extract on in vitro ruminal fermentation characteristics and methane emission vol.8, pp.None, 2020, https://doi.org/10.7717/peerj.9651
  5. 왕대의 첨가수준이 반추위 in vitro 발효성상과 메탄 발생량에 미치는 영향 vol.29, pp.2, 2021, https://doi.org/10.11625/kjoa.2021.29.2.241