• Title/Summary/Keyword: pre-loading

Search Result 463, Processing Time 0.027 seconds

Experimental study on propagation behavior of three-dimensional cracks influenced by intermediate principal stress

  • Sun, Xi Z.;Shen, B.;Zhang, Bao L.
    • Geomechanics and Engineering
    • /
    • v.14 no.2
    • /
    • pp.195-202
    • /
    • 2018
  • Many laboratory experiments on crack propagation under uniaxial loading and biaxial loading have been conducted in the past using transparent materials such as resin, polymethyl methacrylate (PMMA), etc. However, propagation behaviors of three-dimensional (3D) cracks in rock or rock-like materials under tri-axial loading are often considerably different. In this study, a series of true tri-axial loading tests on the rock-like material with two semi-ellipse pre-existing cracks were performed in laboratory to investigate the acoustic emission (AE) characteristics and propagation characteristics of 3D crack groups influenced by intermediate principal stress. Compared with previous experiments under uniaxial loading and biaxial loading, the tests under true tri-axial loading showed that shear cracks, anti-wing cracks and secondary cracks were the main failure mechanisms, and the initiation and propagation of tensile cracks were limited. Shear cracks propagated in the direction parallel to pre-existing crack plane. With the increase of intermediate principal stress, the critical stress of crack initiation increased gradually, and secondary shear cracks may no longer coalesce in the rock bridge. Crack aperture decreased with the increase of intermediate principal stress, and the failure is dominated by shear fracturing. There are two stages of fracture development: stable propagation stage and unstable failure stage. The AE events occurred in a zone parallel to pre-existing crack plane, and the AE zone increased gradually with the increase of intermediate principal stress, eventually forming obvious shear rupture planes. This shows that shear cracks initiated and propagated in the pre-existing crack direction, forming a shear rupture plane inside the specimens. The paths of fracturing inside the specimens were observed using the Computerized Tomography (CT) scanning and reconstruction.

An Experimental Study on the Permeability of Reinforcement Concrete on Consideration of Pre-loading (선행하중을 고려한 보강 콘크리트의 투수성능에 관한 실험적 연구)

  • Han, Byoung-Young;Bae, Ju-Seong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.9 no.3
    • /
    • pp.87-92
    • /
    • 2005
  • The permeability of concrete affects largely on the durability of concrete, therefore it is required that the correct assessment and improvement of permeability. Therefore it is rational method that the permeability of concrete structures is estimated in the common use states under loading than in the early sound conditions. In this study, to improve the permeable efficiency of concrete, some kinds of fiber and resin are mixed in making of concrete specimens. And also, for the reasonable assessment of permeability, after 50% and 70% pre-loadings of its compressive strength were acted on the specimens, the tests were executed. From the results of this study, in the case of 50% pre-loading coefficients of permeability were increased about 1.4times against the nonpre-loading specimens and in the case of 70% pre-loading they were increased about 17.8times. And it turned out that hybrid steel fiber reinforcement is most effective for the improvement of permeable efficiency of concrete.

Effects by the Magnitude of Shear Load on the Formation and Propagation of Mode II Branch Cracks (전단하중의 크기가 모드 II 분기균열의 형성과 전파에 미치는 영향)

  • 이정무;송삼홍
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.487-490
    • /
    • 2004
  • In this paper, we investigated the characteristics of initiation and propagation behavior for fatigue crack observed by changing various shapes of initial crack and magnitudes of loading in modified compact tension shear(CTS) specimen subjected to shear loading. In the low-loading condition, the secondary fatigue crack was created in the notch root due to friction on the pre-crack face grew to a main crack. In the high-loading condition, fatigue crack under shear loading propagated branching from the pre-crack tip. Influenced by the shear loading condition, fatigue crack propagation retardation appeared in the initial propagation region due to the reduction of crack driving force and friction on crack face. In both cases, however, fatigue cracks grew in tensile mode type. The propagation path of fatigue crack under the Mode II loading was 70 degree angle from the initial crack regardless of its shape and load magnitude.

  • PDF

The Characteristics of Fatigue Crack Propagation Behavior in Shear Load (전단하중 하의 피로균열 전파거동의 특징)

  • Lee, Jeong-Moo;Song, Sam-Hong
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.302-307
    • /
    • 2004
  • This paper reviewed characteristics of fatigue crack behavior observed by changing various shapes of initial crack and magnitudes of loading in compact tension shear(CTS) specimen subjected to shear loading. In the high-loading condition, fatigue crack under shear loading propagated branching from the pre-crack tip. Meanwhile, the secondary fatigue crack in the low-loading condition which was created in the notch root due to friction on the pre-crack face grew to a main crack. Influenced by the mode II loading condition, fatigue crack propagation retardation appeared in the initial propagation region due to the reduction of crack driving force and friction on crack face. In both cases, however, fatigue cracks grew in tensile mode type. Propagation path of fatigue crack under the shear loading was 70 degree angle from the initial crack regardless of its shape and load magnitude.

  • PDF

Behavior of tunnel under the influence of pre-loading on braced wall during the adjacent ground excavation (근접굴착 시 벽체에 선행하중 재하에 따른 터널의 거동)

  • Kim, Il;Lee, Sang-Duk
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.9 no.4
    • /
    • pp.331-341
    • /
    • 2007
  • Pre-loads could be imposed on the braced wall to prevent the horizontal displacements during the ground excavation adjacent to the existing tunnel. For this purpose, new pre-loading system through which large pre-loads could be applied to the braced wall was used in the model tests. Large scale model tests were performed in the real scale test pit which was 2.0 m in width and 6.0 m in hight and 4.0 m in length. Test ground was constructed by sand. Model tunnel in 1.2 m diameter was constructed before test ground excavation. Test ground was excavated adjacent to existing tunnel and was braced. To investigate the effect of pre-loading, tests without pre-load were also performed. During the ground excavation were the behavior of braced wall, test tunnel, and ground measured. Model tests were also numerically analysed and their results were compared to that of the real scale tests. As a result, it was found that the stability of the existing tunnel was greatly enhanced when the horizontal displacements of braced wall was reduced by applying pre-load larger than the design load.

  • PDF

Strengthening Depth Effect in Externally Post-tensioning Shear Strengthening of Pre-cracked Reinforced Concrete Beam (사전균열이 발생한 철근콘크리트 보의 외적 포스트텐셔닝 전단보강에서 보강깊이의 효과)

  • Lee, Swoo-Heon;Shin, Kyung-Jae;Lee, Hee-Du
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.34 no.11
    • /
    • pp.19-26
    • /
    • 2018
  • This paper presents the shear strengthening effect of externally post-tensioning (EPT) method using high-strength steel rod in pre-cracked reinforced concrete (RC) beams. Three- and four-point bending tests were performed on a total of 8 specimens by adjusting the strengthening depths in the deviator position of EPT. The effective strengthening depths were 435, 535, and 610 mm. The pre-loading up to about 2/3 of ultimate load capacity measured in unstrengthened RC beam were applied in the beam to be post-tensioned. The EPT method was then applied to the pre-damaged RC beams and re-loading was added until the end of the test. EPT restored deflections of 3 mm or more, which account for about 40% of deflection when the pre-loading was applied. The shear strengthening increases more than 3 times and 36~107% in terms of the stiffness and load-carrying capacity compared to unstrengthening RC beams. The increased load-carrying capacities of the post-tensioned beam with strengthening depths of 435 and 535 mm are almost the same as 36~61%, and those of 610 mm are 84~107%, which shows the greatest shear strengthening effect.

An Experimental Study on the Flexural Behavior of Pre-loaded RC Beams Strengthened with CFRP-Rod (선하중(先荷重)을 받은 RC보의 CFRP-Rod 휨보강 효과에 대한 실험적 연구)

  • Ye, Sang-Min;Chun, Woo-Chul;Kang, Joo-Won;Park, Sung-Moo
    • Journal of Korean Association for Spatial Structures
    • /
    • v.7 no.1 s.23
    • /
    • pp.79-85
    • /
    • 2007
  • Steel plate bonding method with epoxy is common applied to repair and strengthen RC structures, but Steel is apt to corrode quickly, hard to manufacture and heavy. To overcome these defects, it is carried out research on strengthening RC structures with FRP(Fibre Reinforced Polyrner/Plastic) FRP is generally used in the shape of Plate or Sheet, but it has weak point such as premature failure, difficult work. To cope with these problem, NSMR(Near Surface Mounted Reinforcement) which uses CFRP in the shape of Rod is proposed and carried out active research on strengthening effect of variables such as quantity, anchorage length and space of CFRP-Rod. Strengthening with CFRP-Rod is carried out under loading to some degree in fact, and so the amount of pre-loading is selected as variable in this research. The amount of pre-loading is chosen in proportion to nominal strength of non-strengthened specimen with CFRP-Rod.

  • PDF

Study on rock fracture behavior under hydromechanical loading by 3-D digital reconstruction

  • Kou, Miaomiao;Liu, Xinrong;Wang, Yunteng
    • Structural Engineering and Mechanics
    • /
    • v.74 no.2
    • /
    • pp.283-296
    • /
    • 2020
  • The coupled hydro-mechanical loading conditions commonly occur in the geothermal and petroleum engineering projects, which is significantly important influence on the stability of rock masses. In this article, the influence of flaw inclination angle of fracture behaviors in rock-like materials subjected to both mechanical loads and internal hydraulic pressures is experimentally studied using the 3-D X-ray computed tomography combined with 3-D reconstruction techniques. Triaxial compression experiments under confining pressure of 8.0 MPa are first conducted for intact rock-like specimens using a rock mechanics testing system. Four pre-flawed rock-like specimens containing a single open flaw with different inclination angle under the coupled hydro-mechanical loading conditions are carried out. Then, the broken pre-flawed rock-like specimens are analyzed using a 3-D X-ray computed tomography (CT) scanning system. Subsequently, the internal damage behaviors of failed pre-flawed rock-like specimens are evaluated by the 3-D reconstruction techniques, according to the horizontal and vertical cross-sectional CT images. The present experimental does not only focus on the mechanical responses, but also pays attentions to the internal fracture characteristics of rock-like materials under the coupled hydro-mechanical loading conditions. The conclusion remarks are significant for predicting the rock instability in geothermal and unconventional petroleum engineering.

Estimating Void Ratio Changes of a Pre-loading Site Using Bender Elements Sensors (벤더 엘리먼트 센서를 이용한 선행 재하공법 현장의 간극비 변화 추정)

  • Kim, Hak-Sung;Jung, Young-Hoon;Kim, Byung-Chul;Mok, Young-Jin
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.1110-1116
    • /
    • 2010
  • Void ratios are one of the key parameters for exact calculation of settlement of soft groundse. In the study, shear wave velocities of a soft ground were used to measure the field void ratio using bender elements sensors. The bender-element probes were installed in situ at the depths of 3, 5 and 8m on a pre-loading site near Incheon, Korea. During 90 days after installation, the changes of shear wave velocity and ground surface settlement were measured. The field void ratio was estimated from measured shear wave velocities. The void ratio estimated by the shear wave velocity measured by bender elements agrees well with the measured values in the field.

  • PDF

On the Flexural Strengthening Effect of the CFS Strengthened RC Beam under Pre-Loading Condition (가력중 탄소섬유로 보강된 RC보의 휨보강 효과)

  • Song, Won-Young;Jang, Hee-Suk;Cha, Young-Soo;Lee, Hong-Ju;Kim, Hee-Sung
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.92-95
    • /
    • 2004
  • The flexural strengthening effect of the RC beam strengthened with CFS under pre-loading condition was studied here. The beams were additionally strengthened at the each end with U type wrapping using the same CFS. Main variables considered were number of CFS plies(1,2) and pre-loading values(30,50,$70\%$ of the yield load of the control beam). The flexural strengthening effect was investigated through comparing the yield load, ultimate load, and ductility index of the specimens.

  • PDF