• 제목/요약/키워드: prM protein

검색결과 46건 처리시간 0.03초

Generation of ovine recombinant prion protein (25-232): Characterisation via anti-PrP monoclonal antibodies and CD spectroscopy

  • Yang, Su-Jeong;Thackray, Alana;Bujdoso, Raymond
    • 한국동물위생학회지
    • /
    • 제28권4호
    • /
    • pp.393-405
    • /
    • 2005
  • In prion pathogenesis, the structural conversion of the cellular prion protein $(PrP^c)$ to its abnormal isomer $(PrP^{Sc})$ is believed to be a major event. The susceptibility or resistance to natural sheep scrapie is associated with polymorphisms of host PrP gene (PRNP) at amino acid residues 136, to a lesser extent 154. The 112 residue in ovine PrP displays a natural polymorphism, Methionine to Threonine, which has not been thoroughly investigated. However the cell-free conversion assay showed that ARQ with Thr112 $(T_{112}ARQ)^{1)}$ presents lower convertibility to $PrP^{Sc}$than wild type ARQ $(M_{112}ARQ)$ [1] In this study we generated ovine recombinant PrPs of 112 allelic variants by metal chelate affinity chromatography and cation exchange chromatography. The final purity of the ovine PrP ARQ was more than $95\%$. These variants showed similar immunoreactivity against anti-PrP monoclonal antibodies in Western blot and ELISA. The refolded $M_{112}ARQ$ and $M_{112}ARQ$ presented the secondary structural content to similar extent via CD spectroscopy analysis. The inherited structural features of $M_{112}ARQ$ and $M_{112}ARQ$ under the different biophysical conditions are in the middle of investigation.

${\lambda}$형(型) Bence Jones 단백질(蛋白質)의 N 말단주변(末端周邊)의 아미노산배열순서(酸配刻順序)에 관한 연구(硏究) (N-Terminal Sequences of ${\lambda}$-type Bence Jones Proteins)

  • 김준평
    • Applied Biological Chemistry
    • /
    • 제13권1호
    • /
    • pp.65-72
    • /
    • 1970
  • Bence Jones 단백질중(蛋白質中) ${\lambda}$형(型)의 N-말단(末端) 및 그 주변(周邊)의 아미노산배열(酸配列)을 결정(決定)하기 위하여 본(本) 실험(實輸)이 시도(試圖)되었던바 그 결과(結果)는 다음과 같다. 1) Bence Jones 단백질(蛋白質)을 Pronase와 Chymotrypsin으로 분해(分解)하여 얻은 Peptide중에서 Im Pr-M 및 Im Ch-M와 Ik Ch-M을 Dowex $50{\times}2$ column $1{\times}20$cm)와 Dowex $1{\times}2$ column $(0.9{\times}50{\;}cm)$을 사용(使用)하여 분리(分離)하였다. 2) ${\lambda}$형(型) Bence Jones단백질(蛋白質)의 N-말단(末端)은pyrroglutamic acid로 되어 있음을 alkali반응(反應)과 고압여지전기영동법(高壓濾紙電氣泳動法)으로 확인(確認)하였다. 3) 농염산(濃鹽酸)(12N) 반응(反應)($27^{\circ}C$, 15시간(時間))을 이용(利用)하며 Peptide중(中)의 Serine부(部)를 선택적(選擇的)으로 절단(切斷)할 수 있었다. 4) 이들 Peptide의 아미노배열순서(配列順序)는 Edman의 PTC법(法)과 소거법(消去法) 및 CarboBypeptidase A를 사용(使用)하여 결정(決定)하였다. 5) 분리(分離)한 Peptide의 아미노산배열순서(酸配列順序)는 다음과 같았다. $Im\;Ch-M\;PCA{\cdot}Ser{\cdot}Val{\cdot}Leu$ $Ik\;Ch-M\;PCA{\cdot}Ser{\cdot}Ala{\cdot}Leu1$

  • PDF

애기장대 칼모듈린 결합 단백질 AtCBP63을 발현시킨 형질전환 감자의 무름병 저항성 증가 (AtCBP63, a Arabidopsis Calmodulin-binding Protein 63, Enhances Disease Resistance Against Soft Rot Disease in Potato)

  • 전현진;박형철;구영민;김태원;조광수;조현설;윤대진;정우식;이신우
    • Journal of Plant Biotechnology
    • /
    • 제38권1호
    • /
    • pp.62-68
    • /
    • 2011
  • 원예작물의 생육을 저하시키는 각종 병충해로 인한 과도한 농약과 화학비료의 사용은 환경오염뿐만 아니라 작물의 생산량에도 큰 영향을 미치고 있다. 식물생명공학기술을 이용하여 농약이나 화학비료 사용량을 획기적으로 줄일 수 있는 식물체의 개발, 즉 형질전환을 이용한 분자 육종기술은 병충해 내성 농작물을 개발하여 과도한 화학비료의 사용에 따르는 여러가지 문제점들을 극복할 수 있는 대안으로 대두되고 있다. 본 연구에서는 모델식물인 애기장대에서 분리한 식물생체방어 신호전달에 관련된 AtCBP63 유전자를 감자에 과발현시켰고, 이러한 형질 전환 감자에서 병저항성에 관여하는 유전자인 PR-2, PR-3, PR-5 유전자들의 발현이 증가되어 지속적으로 식물 방어 기작이 활성화되어 있음을 확인하였다. 또한, 감자에서 무름병 (soft rot disease)을 일으켜 막대한 피해를 유발하는 병원성 세균인 Erwinia carotovora subsp. Carotovora (Ecc)를 이용하여 AtCBP63 유전자를 과발현한 감자에 감염시켰을 때, 병 저항성이 증가한다는 사실을 검증하였다. 앞으로, 다양한 곰팡이 균에 대응하여 AtCBP63 유전자를 과발현한 감자에 저항성을 검증하고자 한다.

Isolation and Differential Expression of an Acidic PR-1 cDNA Gene from Soybean Hypocotyls Infected with Phtophthora sojae f. sp. glycines

  • Kim, Choong-Seo;Yi, Seung-Youn;Lee, Yeon-Kyung;Hwang, Byung-Kook
    • The Plant Pathology Journal
    • /
    • 제16권1호
    • /
    • pp.9-18
    • /
    • 2000
  • Using differential display techniques, a new acidic pathogenesis-related (PR) protein-1 cDNA (GMPRla) gene was isolated from a cDNA library of soybean (Glycinemax L.Merr, cultivar Jangyup) hypocotyls infected by Phytophthora sojae f. sp. glycines. The 741 bp of fulllength GMPRla clone contains an open reading frame of 525 nucleotides encoding 174 amino acid residues (pI 4.23) with a putative signal peptide of 27 amino acids in the N-terminus. Predicted molecular weight of the protein is 18,767 Da. The deduced amino acid sequence of GMPRla has a high level of identity with PR-1 proteins from Brassica napus, Nicotiana tabacum, and Sambucus nigra. The GMPRla mRNA was more strongly expressed in the incompatible than the compatible interaction. The transcript accumulation was induced in the soybbean hypocotyls by treatment with ethephon or DL-$\beta$-amino-n-butyric acid, but not by wounding. In situ hybridization data showed that GMPRIa mRNAs were usually localized in the vascular bundle of hypocotyl tissues, especially phloem tissue. Differences between compatible and incompatible interactions in the timing of GMPRla mRNA accumulation were remarkable, but the spatial distribution of GMPRla mRNA was similar in both interactions. However, more GMPRla mRNA was accumulated in soybean hypocotyls at 6 and 24 h after inoculation.

  • PDF

Branched-chain Amino Acids are Beneficial to Maintain Growth Performance and Intestinal Immune-related Function in Weaned Piglets Fed Protein Restricted Diet

  • Ren, M.;Zhang, S.H.;Zeng, X.F.;Liu, H.;Qiao, S.Y.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제28권12호
    • /
    • pp.1742-1750
    • /
    • 2015
  • As a novel approach for disease control and prevention, nutritional modulation of the intestinal health has been proved. However, It is still unknown whether branched-chain amino acid (BCAA) is needed to maintain intestinal immune-related function. The objective of this study was to determine whether BCAA supplementation in protein restricted diet affects growth performance, intestinal barrier function and modulates post-weaning gut disorders. One hundred and eight weaned piglets ($7.96{\pm}0.26kg$) were randomly fed one of the three diets including a control diet (21% crude protein [CP], CON), a protein restricted diet (17% CP, PR) and a BCAA diet (BCAA supplementation in the PR diet) for 14 d. The growth performance, plasma amino acid concentrations, small intestinal morphology and intestinal immunoglobulins were tested. First, average daily gain (ADG) (p<0.05) and average daily feed intake (ADFI) (p<0.05) of weaned pigs in PR group were lower, while gain:feed ratio was lower than the CON group (p<0.05). Compared with PR group, BCAA group improved ADG (p<0.05), ADFI (p<0.05) and feed:gain ratio (p<0.05) of piglets. The growth performance data between CON and BCAA groups was not different (p>0.05). The PR and BCAA treatments had a higher (p<0.05) plasma concentration of methionine and threonine than the CON treatment. The level of some essential and functional amino acids (such as arginine, phenylalanine, histidine, glutamine etc.) in plasma of the PR group was lower (p<0.05) than that of the CON group. Compared with CON group, BCAA supplementation significantly increased BCAA concentrations (p<0.01) and decreased urea concentration (p<0.01) in pig plasma indicating that the efficiency of dietary nitrogen utilization was increased. Compared with CON group, the small intestine of piglets fed PR diet showed villous atrophy, increasing of intra-epithelial lymphocytes (IELs) number (p<0.05) and declining of the immunoglobulin concentration, including jejunal immunoglobulin A (IgA) (p = 0.04), secreted IgA (sIgA) (p = 0.03) and immunoglobulin M (p = 0.08), and ileal IgA (p = 0.01) and immunoglobulin G (p = 0.08). The BCAA supplementation increased villous height in the duodenum (p<0.01), reversed the trend of an increasing IELs number. Notably, BCAA supplementation increased levels of jejunal and ileal immunoglobulin mentioned above. In conclusion, BCAA supplementation to protein restricted diet improved intestinal immune defense function by protecting villous morphology and by increasing levels of intestinal immunoglobulins in weaned piglets. Our finding has the important implication that BCAA may be used to reduce the negative effects of a protein restricted diet on growth performance and intestinal immunity in weaned piglets.

Prion Protein Genotypes in Pakistani Goats

  • Babar, M.E.;Nawaz, M.;Nasim, A.;Abdullah, M.;Imran, M.;Jabeen, R.;Chatha, S.A.;Haq, A.U.;Nawaz, A.;Mustafa, H.;Nadeem, A.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제21권7호
    • /
    • pp.936-940
    • /
    • 2008
  • The PCR-amplified prion protein (PrP) gene was sequenced to determine the frequency of scrapie-associated as well as novel PrP genotypes in 72 healthy goats representing five breeds. A total of six genotypes were detected, resulting from the three reported 143 (H/R), 154 (R/H) and 240 (S/P) and the two novel 39 (S/R) and 185 (I/F) amino acid polymorphisms. Of the four silent mutations 42 (a$\rightarrow$g), 138 (c$\rightarrow$t), 231 (c$\rightarrow$a) and 237 (g$\rightarrow$c) detected in this study, 237 (g$\rightarrow$c) is novel. A genotype (SIP/RFP) harboring three amino acid polymorphisms 39 (S/R), 185 (I/F) and 240 (S/P) was found in few goats. Although both scrapie-associated genotypes with 143 (H/R) and 154 (R/H) polymorphisms and others with 39 (S/R), 185 (I/F) and 240 (S/P) polymorphisms were present in the studied Pakistani goats, their frequency was lower than that of the wild-type genotype SHRIS/SHRIS (34.7%). These results emphasize the need for further sequencing of the PrP gene in a large number of goats representing the five studied breeds, so that overall PrP variability can be assessed in these breeds in research addressing future concerns about scrapie.

HspBP1 Is the Negative Regulator of the Bovine Progesterone Receptor

  • Park, K.M.;Song, J.W.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제16권9호
    • /
    • pp.1261-1267
    • /
    • 2003
  • We have investigated whether HspBP1, a Hsp70 binding protein, could have effect on the assembly of the bovine progesterone receptor (bPR) with a chaperone complex consisting of bovine Hsp90 (bHsp90), bovine Hsp70 (bHsp70), Hop, Ydj-1, and p23. The bPR, isolated in its native conformation, loses its function to interact with progesterone hormone in the absence of this protein complex. However, in the presence of bHsp90, bHsp70, Hop, p23 and Ydj-1, its function could be restored in vitro. Our findings here indicate that the inclusion of HspBP1 to five-protein system prevented the proper assembly of progesterone receptor-chaperone complex and induce the loss of bPR ability to interact with hormone. Immunoprecipitation assays of bPR with HspBP1 show that the presence of HspBP1 did not have any effect on the assembly of Ydj-1 and bHsp70 with the progesterone receptor. However, further assembly of Hsp90, Hop and p23 was completely prevented and the function of the bPR was lost. In vitro competition and protein folding assays indicated that the binding of HspBP1 to bHsp70 prevented the ternary complex formation of bHsp70, bHsp90, and Hop. These results indicate that HspBP1 is a negative regulator of the assembly of Hsp90, Hop and Hsp70, and thus, prevent the proper maturation of unliganded bPR with chaperones assembly system.

Cloning, Sequencing, and Expression of cDNA Encoding Bovine Prion Protein

  • Kang, Sang-Gyun;Kang, Sung-Keun;Lee, Deog-Yong;Park, Yong-Ho;Hwang, Woo-Suk;Yoo, Han-Sang
    • Journal of Microbiology and Biotechnology
    • /
    • 제14권2호
    • /
    • pp.417-421
    • /
    • 2004
  • A normal prion protein (PrPc) is converted to a protease resistant isoform (PrPsc) by an apparent self-propagating activity in bovine spongiform encephalopathies (BSE), which is a neurodegenerative disease. The cDNA encoding bovine PrP open reading frame (ORP) in Korean cattle was cloned by polymerase chain reaction (PCR). The cloned cDNA had a length of 795 base pairs which coded for a protein of 264 amino acid residues with a calculated molecular mass of 28.6 kDa. Identities of 90, 90, 79 and 78% on nucleotide and 94, 94, 84, and 84% on amino acid sequence were shown to PrP genes from sheep, goat, human, and mouse, respectively. The cloned DNA was ligated into the pQE30 expression vector and transformed into E. coli M15. The PrP was expressed by induction with isopropyl-$\beta$-D-thiogalactoside (IPTG) and purified on the Ni-NTA affinity column. High specific activities of the recombinant PrP were observed in the fraction of pH 5.8 eluate and showed a molecular mass of-29 kDa on SDS-PAGE and Western blot analysis.

일본뇌염바이러스의 Mutant M 단백질에 반응하는 다클론항체의 생산: 극성 아미노산 잔기의 바이러스 생산과정에서의 역할 (Production of the Polyclonal Antibody That Recognizes the Mutant M Protein of Japanese Encephalitis Virus: Role of Its Charged Residues in Virus Production)

  • 김정민;윤상임;송병학;김진경;이영민
    • 미생물학회지
    • /
    • 제46권2호
    • /
    • pp.140-147
    • /
    • 2010
  • 일본뇌염바이러스(Japanese encephalitis virus)는 모기 매개성 플라비바이러스에 속하며, 주로 동남아시아 지역에서 유행성 바이러스성 뇌염을 일으킨다. 일본뇌염바이러스는 외피를 가진 작은 바이러스로서, 양성가닥 RNA 게놈을 가지고 있다. 감염성을 띤 바이러스 입자는 capsid (C), membrane (M; prM 전구체로부터 생성), 및 envelope (E)과 같은 3개의 구조단백질로 이루어져 있다. 본 연구에서는 일본뇌염바이러스 생산과 정에 M 단백질의 N-말단부위에 위치한 극성 아미노산 잔기의 역할을 분석하였다. 일본뇌염바이러스의 infectious cDNA를 활용하여, M 단백질의 $E^9$$K^{15}K^{16}E^{17}$ 잔기를 알라닌으로 치환시킨 2개의 mutant cDNA (Mm1과 Mm2)를 각각 제작하였다. 각각의 cDNA로부터 합성된 mutant RNA를 세포에 트랜스펙션시킴으로써, 비록 세포 내에 축적된 3개의 구조단백질양은 변화가 없으나, 이들 세포로부터 생산된 바이러스의 양은 Mm2 RNA의 경우 ~1,000배 감소됨을 관찰하였다. 흥미롭게도, Mm2 RNA로부터 발현된 mutant M 단백질은 wild-type M 단백질을 인지하는 항혈청에는 반응하지 않았으나, mutant M 단백질을 항원으로 제작된 항혈청에는 반응하는 것을 알 수 있었다. 본 실험결과는 일본뇌염바이러스 M 단백질을 구성하는 3개의 극성 아미노산 잔기($K^{15}K^{16}E^{17}$)가 바이러스의 생산과정에 관여한다는 것을 암시한다. 앞으로, wild-type 또는 mutant M 단백질(Mm2)을 인식하는 2개의 항혈청은 이 단백질의 기능연구에 유용한 재료로 사용될 것으로 기대된다.

작약 및 포제작약의 최종당화산물 억제를 통한 피부 주름 개선 효과 (Skin Wrinkle Improvement Effect of Paeoniae radix and processed Paeoniae radix Through inhibition of Advanced glycation end products (AGEs))

  • 김수지;이아름;김수현;김경조;권오준;최준영;구진숙;노성수
    • 대한본초학회지
    • /
    • 제32권4호
    • /
    • pp.53-60
    • /
    • 2017
  • Objectives : Collagen decrease of Skin appears through various path ways. One of causes may be the Advanced glycation endproducts (AGEs) that combine formation of glucose and protein. The aim of this study was to explore the prevent wrinkle formation of Paeoniae radix (PR) and heated Paeoniae radix (HPR) via AGEs path way. Methods : AGEs formation inhibitory activities of PR and HPR measured using bovine serum albumin, glucose, and fructose. To evaluate the protective effects of PR and HPR in diabetic rats induced with streptozotocin (STZ) and methyl glyoxal (MGO), SD rat were distributed into four groups. Normal rats (Nor), AGEs-induced rats (Con), AGEs-induced rats treated with 100 mg/kg PR(PR), AGEs-induced rats treated with 100 mg/kg HPR (HPR). To induce AGEs, streptozotocin (50 mg/kg) was administered intraperitoneally and after 3 days administrated 100mM methyl glyoxal for 3 weeks. Results : The oral administration of HPR inhibited AGEs in skin tissues compared with PR. The increased reactive oxygen species (ROS) levels in the serum were diminished by HPR treatment. The analyses of kidney and skin tissues proteins indicated that HPR treatment effectively reduced AGEs related protein levels as compared to that by PR treatment. Also, HPR decreased anti-oxidant related protein levels in skin tissues such as catalase, glutathione peroxidase. Moreover, it inhibited the reduction of COL1A2 by decreasing MMP-1. Conclusion : Based on these results, it was suggested that PR and HPR could have Improving effects on wrinkle formation. These evidences provide useful information for the development wrinkle formation treated agent.