Production of the Polyclonal Antibody That Recognizes the Mutant M Protein of Japanese Encephalitis Virus: Role of Its Charged Residues in Virus Production

일본뇌염바이러스의 Mutant M 단백질에 반응하는 다클론항체의 생산: 극성 아미노산 잔기의 바이러스 생산과정에서의 역할

  • Kim, Jeong-Min (Department of Microbiology, College of Medicine and Medical Research Institute, Chungbuk National University) ;
  • Yun, Sang-Im (Department of Microbiology, College of Medicine and Medical Research Institute, Chungbuk National University) ;
  • Song, Byung-Hak (Department of Microbiology, College of Medicine and Medical Research Institute, Chungbuk National University) ;
  • Kim, Jin-Kyoung (Department of Microbiology, College of Medicine and Medical Research Institute, Chungbuk National University) ;
  • Lee, Young-Min (Department of Microbiology, College of Medicine and Medical Research Institute, Chungbuk National University)
  • 김정민 (충북대학교 의과대학 미생물학교실, 의학연구소) ;
  • 윤상임 (충북대학교 의과대학 미생물학교실, 의학연구소) ;
  • 송병학 (충북대학교 의과대학 미생물학교실, 의학연구소) ;
  • 김진경 (충북대학교 의과대학 미생물학교실, 의학연구소) ;
  • 이영민 (충북대학교 의과대학 미생물학교실, 의학연구소)
  • Received : 2010.05.10
  • Accepted : 2010.06.01
  • Published : 2010.06.30

Abstract

Japanese encephalitis virus (JEV), a member of the mosquito-borne flaviviruses, causes epidemics of viral encephalitis in the Southeastern Asia. JEV is a small enveloped virus with a positive-sense RNA genome; the infectious virion consists of three structural proteins, namely capsid, membrane (M; a mature form of its prM precursor), and envelope proteins. Here, we investigated a role of the charged residues found at the N-terminus of the JEV M protein in virus production. Using an infectious JEV cDNA, we generated two mutant cDNAs, Mm1 and Mm2, by charged-to-alanine substitution for $E^9$ and $K^{15}K^{16}E^{17}$ residues of the M protein, respectively. By transfection of wild-type or each of the two mutant RNAs transcribed from the corresponding cDNAs, we found that Mm2, but not Mm1, had a ~3-log decrease in virus production, even though a comparable amount of all three structural proteins were produced in transfected cells. Interestingly, the prM protein expressed in Mm2 RNA-transfected cells was not recognized by the polyclonal antiserum raised against the N-terminal 44 amino acids of the wild type M protein, but reacted to the antiserum raised against the corresponding region of the mutant Mm2. Our results indicate that three charged residues ($K^{15}K^{16}E^{17}$) in JEV M protein play a role in virus production. Two polyclonal antisera specifically recognizing the wild-type or Mm2 version of the M protein would provide a useful reagent for the functional study of this protein in the virus life cycle.

일본뇌염바이러스(Japanese encephalitis virus)는 모기 매개성 플라비바이러스에 속하며, 주로 동남아시아 지역에서 유행성 바이러스성 뇌염을 일으킨다. 일본뇌염바이러스는 외피를 가진 작은 바이러스로서, 양성가닥 RNA 게놈을 가지고 있다. 감염성을 띤 바이러스 입자는 capsid (C), membrane (M; prM 전구체로부터 생성), 및 envelope (E)과 같은 3개의 구조단백질로 이루어져 있다. 본 연구에서는 일본뇌염바이러스 생산과 정에 M 단백질의 N-말단부위에 위치한 극성 아미노산 잔기의 역할을 분석하였다. 일본뇌염바이러스의 infectious cDNA를 활용하여, M 단백질의 $E^9$$K^{15}K^{16}E^{17}$ 잔기를 알라닌으로 치환시킨 2개의 mutant cDNA (Mm1과 Mm2)를 각각 제작하였다. 각각의 cDNA로부터 합성된 mutant RNA를 세포에 트랜스펙션시킴으로써, 비록 세포 내에 축적된 3개의 구조단백질양은 변화가 없으나, 이들 세포로부터 생산된 바이러스의 양은 Mm2 RNA의 경우 ~1,000배 감소됨을 관찰하였다. 흥미롭게도, Mm2 RNA로부터 발현된 mutant M 단백질은 wild-type M 단백질을 인지하는 항혈청에는 반응하지 않았으나, mutant M 단백질을 항원으로 제작된 항혈청에는 반응하는 것을 알 수 있었다. 본 실험결과는 일본뇌염바이러스 M 단백질을 구성하는 3개의 극성 아미노산 잔기($K^{15}K^{16}E^{17}$)가 바이러스의 생산과정에 관여한다는 것을 암시한다. 앞으로, wild-type 또는 mutant M 단백질(Mm2)을 인식하는 2개의 항혈청은 이 단백질의 기능연구에 유용한 재료로 사용될 것으로 기대된다.

Keywords

References

  1. Allison, S.L., K. Stadler, C.W. Mandl, C. Kunz, and F.X. Heinz. 1995. Synthesis and secretion of recombinant tick-borne encephalitis virus protein E in soluble and particulate form. J. Virol. 69, 5816-5820.
  2. Burke, D.S. and C.J. Leake. 1988. Japanese encephalitis, pp. 63-92. In T.P. Monath (ed.), The Arboviruses: Epidemiology and Ecology, vol. III. CRC Press, Florida, USA.
  3. Burke, D.S. and T.P. Monath. 2001. Flaviviruses, pp. 1043-1125. In D.M. Knipe, P.M. Howley, D.E. Griffin, R.A. Lamb, M.A. Martin, B. Roizman, and S.E. Strauss (eds.), Fields virology, 4th ed. Lippincott Williams & Wilkins Publishers, Philadelphia, USA.
  4. Chambers, T.J., C.S. Hahn, R. Galler, and C.M. Rice. 1990. Flavivirus genome organization, expression, and replication. Annu. Rev. Microbiol. 44, 649-688. https://doi.org/10.1146/annurev.mi.44.100190.003245
  5. Courageot, M.P., M.P. Frenkiel, C.D. Dos Santos, V. Deubel, and P. Despres. 2000. $\alpha$-Glucosidase inhibitors reduce dengue virus production by affecting the initial steps of virion morphogenesis in the endoplasmic reticulum. J. Virol. 74, 564-572. https://doi.org/10.1128/JVI.74.1.564-572.2000
  6. Elshuber, S., S.L. Allison, F.X. Heinz, and C.W. Mandl. 2003. Cleavage of protein prM is necessary for infection of BHK-21 cells by tick-borne encephalitis virus. J. Gen. Virol. 84, 183-191. https://doi.org/10.1099/vir.0.18723-0
  7. Gaunt, M.W., A.A. Sall, X. de Lamballerie, A.K. Falconar, T.I. Dzhivanian, and E.A. Gould. 2001. Phylogenetic relationships of flaviviruses correlate with their epidemiology, disease association and biogeography. J. Gen. Virol. 82, 1867-1876. https://doi.org/10.1099/0022-1317-82-8-1867
  8. Gould, E.A., X. de Lamballerie, P.M. Zanotto, and E.C. Holmes. 2003. Origins, evolution, and vector/host coadaptations within the genus Flavivirus. Adv. Virus Res. 59, 277-314. https://doi.org/10.1016/S0065-3527(03)59008-X
  9. Guirakhoo, F., R.A. Bolin, and J.T. Roehrig. 1992. The Murray Valley encephalitis virus prM protein confers acid resistance to virus particles and alters the expression of epitopes within the R2 domain of E glycoprotein. Virology 191, 921-931. https://doi.org/10.1016/0042-6822(92)90267-S
  10. Hanna, J.N., S.A. Ritchie, D.A. Phillips, J.M. Lee, S.L. Hills, A.F. van den Hurk, A.T. Pyke, C.A. Johansen, and J.S. Mackenzie. 1999. Japanese encephalitis in north Queensland, Australia. Med. J. 170, 533-536.
  11. Hashimoto, H., A. Nomoto, K. Watanabe, T. Mori, T. Takezawa, C. Arizawa, T. Takegami, and K. Hiramatsu. 1988. Molecular cloning and complete nucleotide sequence of the genome of Japanese encephalitis virus Beijing-1 strain. Virus Genes 1, 305-317. https://doi.org/10.1007/BF00572709
  12. Heinz, F.X. and S.L. Allison. 2003. Flavivirus structure and membrane fusion. Adv. Virus Res. 59, 63-97. https://doi.org/10.1016/S0065-3527(03)59003-0
  13. Konishi, E. and P.W. Mason. 1993. Proper maturation of the Japanese encephalitis virus envelope glycoprotein requires cosynthesis with the premembrane protein. J. Virol. 67, 1672-1675.
  14. Kuno, G., G.J. Chang, K.R. Tsuchiya, N. Karabatsos, and C.B. Cropp. 1998. Phylogeny of the genus Flavivirus. J. Virol. 72, 73-83.
  15. Lin, Y.J. and S.C. Wu. 2005. Histidine at residue 99 and the transmembrane region of the precursor membrane prM protein are important for the prM-E heterodimeric complex formation of Japanese encephalitis virus. J. Virol. 79, 8535-8544. https://doi.org/10.1128/JVI.79.13.8535-8544.2005
  16. Lindenbach, B.D. and C.M. Rice. 2001. Flaviviridae: The viruses and their replication, pp. 991-1041. In D.M. Knipe, P.M. Howley, D.E. Griffin, R.A. Lamb, M.A. Martin, B. Roizman, and S.E. Straus (eds.), Fields virology, 4th ed. Lippincott Williams & Wilkins Publishers, Philadelphia, USA.
  17. Lorenz, I.C., S.L. Allison, F.X. Heinz, and A. Helenius. 2002. Folding and dimerization of tick-borne encephalitis virus envelope proteins prM and E in the endoplasmic reticulum. J. Virol. 76, 5480-5491. https://doi.org/10.1128/JVI.76.11.5480-5491.2002
  18. Mackenzie, J.S., M. Poidinger, D.A. Phillips, C.A. Johansen, R.A. Hall, J.N. Hanna, S.A. Ritchie, J. Shield, and R. Graham. 1997. Emergence of Japanese encephalitis virus in the Australian region, pp. 191-201. In J. Saluzzo and B. Dodet (eds.), Factors in the Emergence of Arboviruses Diseases. Elsevier, Paris, France.
  19. Mackenzie, J.M. and E.G. Westaway. 2001. Assembly and maturation of the flavivirus Kunjin virus appear to occur in the rough endoplasmic reticulum and along the secretory pathway, respectively. J. Virol. 75, 10787-10799. https://doi.org/10.1128/JVI.75.22.10787-10799.2001
  20. Markoff, L. 2003. 5'- and 3'-noncoding regions in flavivirus RNA. Adv. Virus Res. 59, 177-228. https://doi.org/10.1016/S0065-3527(03)59006-6
  21. Mukhopadhyay, S., R.J. Kuhn, and M.G. Rossmann. 2005. A structural perspective of the flavivirus life cycle. Nat. Rev. Microbiol. 3, 13-22. https://doi.org/10.1038/nrmicro1067
  22. Op De Beeck, A., R. Molenkamp, M. Caron, A. Ben Younes, P. Bredenbeek, and J. Dubuisson. 2003. Role of the transmembrane domains of prM and E proteins in the formation of yellow fever virus envelope. J. Virol. 77, 813-820. https://doi.org/10.1128/JVI.77.2.813-820.2003
  23. Op De Beeck, A., Y. Rouille, M. Caron, S. Duvet, and J. Dubuisson. 2004. The transmembrane domains of the prM and E proteins of yellow fever virus are endoplasmic reticulum localization signals. J. Virol. 78, 12591-12602. https://doi.org/10.1128/JVI.78.22.12591-12602.2004
  24. Sambrook, J., E.F. Fritsch, and T. Maniatis. 1989. Molecular cloning: a laboratory manual, 2nd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, N.Y., USA.
  25. Shield, J., J.N. Hanna, and D.A. Phillips. 1996. Reappearance of the Japanese encephalitis virus in the Torres Strait. Comm. Dis. Intel. 20, 191.
  26. Spicer, P.E., D.A. Phillips, A.T. Pyke, C.A. Johansen, W. Melrose, and R.A. Hall. 1999. Antibodies to Japanese encephalitis virus in human sera collected from Irian Jaya. Follow-up of a previously reported case of Japanese encephalitis in that region. Trans. R. Soc. Trop. Med. Hyg. 93, 511-514. https://doi.org/10.1016/S0035-9203(99)90353-X
  27. Stadler, K., S.L. Allison, J. Schalich, and F.X. Heinz. 1997. Proteolytic activation of tick-borne encephalitis virus by furin. J. Virol. 71, 8475-8481.
  28. Tsai, T.F. 2000. New initiatives for the control of Japanese encephalitis by vaccination: minutes of a W. H. O./CVI meeting, Bangkok, Thailand, 13-15 October 1998. Vaccine 18, 1-25.
  29. Vaughn, D.W. and C.H. Hoke. 1992. The epidemiology of Japanese encephalitis: prospects for prevention. Epidemiol. Rev. 14, 197-221. https://doi.org/10.1093/oxfordjournals.epirev.a036087
  30. Wang, S., R. He, and R. Anderson. 1999. PrM- and cell-binding domains of the dengue virus E protein. J. Virol. 73, 2547-2551.
  31. Wengler, G. and G. Wengler. 1989. Cell-associated West Nile flavivirus is covered with E+pre-M protein heterodimers which are destroyed and reorganized by proteolytic cleavage during virus release. J. Virol. 63, 2521-2526.
  32. Yun, S.I., S.Y. Kim, C.M. Rice, and Y.M. Lee. 2003. Development and application of a reverse genetics system for Japanese encephalitis virus. J. Virol. 77, 6450-6465. https://doi.org/10.1128/JVI.77.11.6450-6465.2003
  33. Yun, S.I. and Y.M. Lee. 2006. Japanese encephalitis virus: molecular biology and vaccine development, pp. 225-271. In M. Kalitzky and P. Borowski (eds.), Molecular biology of the flavivirus. Horizon Scientific Press, Norwich, UK.