• Title/Summary/Keyword: ppm

Search Result 8,483, Processing Time 0.039 seconds

Variations of The Heavy Metal Contents in Human Hairs According to of Hair Coloring Manipulation (모발(毛髮)의 염색처리(染色處理)에 따른 중금속(重金屬) 함량(含量)의 변화(變化))

  • Joung, Yeon;Sung, Su-Kwang
    • Journal of Fashion Business
    • /
    • v.4 no.1
    • /
    • pp.25-32
    • /
    • 2000
  • The purpose of this study was to suggest the knowlege and scientific information of the damage according to the heavy metal exposure level of hair coloring manipulations. The study was investigated variations of the heavy metal contents(Pb, Zn, Cu, Mn, Fe, Ni) in hairdye and human hairs by 1 and 2 times of hair coloring manipulations. The results were as follows; 1. Mean heavy metal contents in colorant of hairdye were 0.250ppm(Pb), 33.650ppm(Zn), 0.800ppm(Cu), 0.675ppm(Mn), 31.050ppm(Fe), 1.700ppm(Ni). In oxidant of hairdye, It were 0.225ppm(Pb), 35.450ppm(Zn), 0.575ppm(Cu), 0.075ppm(Mn), 16.600ppm(Fe), 1.500ppm(Ni). 2. Mean heavy metal contents were 2.950ppm(Pb), 29.000ppm(Zn), 9.400ppm(Cu), 1.075ppm(Mn), 40.775ppm(Fe), 1.950ppm(Ni) in virgin hairs, 3.025ppm(Pb), 40.250ppm(Zn), 9.650ppm(Cu), 1.350ppm(Mn), 42.900ppm(Fe), 2.200ppm(Ni) in 1 time of coloring hairs, 3.350ppm(Pb), 51.650ppm(Zn), 10.950ppm(Cu), 1.475ppm(Mn), 44.350ppm(Fe), 2.225ppm(Ni) in 2 times of coloring hairs.

  • PDF

The Content of Minerals in Algae (해조류(海藻類)의 무기성분(無機成分))

  • Lee, Jong-Ho;Sung, Nak-Ju
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.9 no.1
    • /
    • pp.51-58
    • /
    • 1980
  • Sixteen species of algae (4 species of green algae, 5 species of brown algae and 7 species of red algae) were collected from the coast of Chungmu, Gyeongnam, from June to October, 1976. The content of minerals in algae were analyzed by Atometic Absorption Spectrophotometer. The results were as followed 1) The content of Iron and Nickel in green algae were abundant, and those of Lead, Nickel and Manganese in brown algae were low. 2) The content of Cadmium were in the range of 0.58-1.04ppm (average: 0.85ppm) in green algae, 0.32-2.10ppm (average: 1.08ppm) in brown algae and 0.54-1.70ppm (average: 1.04ppm) in red algae. The content of Cadmium were in the range of 0.3-0.6ppm in laver, Porphyra tenera, sea mustard, Undaria pinnatifida, and tangle, Laminaria japonica, but its content was lower than those expected. 3) The content of Lead were in the range of 0.67-1.40ppm (average: 1.03ppm) in green algae, 0.60-1.00ppm (average: 0.82ppm) in brown algae, 0.56-2.40ppm (average: 1.28ppm) in red algae and its content in algae were lower than in fish and shellfish. 4) The content of Copper were in the range of 10.8-24.2ppm (average: 18.95ppm) in green algae, 7.4-24.6ppm (average: 18.16ppm) in brown algae, 6.4-31.2ppm (average: 19.94ppm) in red algae and those content were considerably abundant except for some algae. 5) The content of Nickel were in the range of 5.4-16.6ppm (average: 9.1ppm) in green algae, 1.0-4.4ppm (average: 2.32ppm) in brown algae and 0.7-4.6ppm (average: 2.59ppm) in red algae. 6) The content of Iron were in the range of 686.4-1159.0ppm (average: 916.5ppm) in green algae, 131.0-499.2ppm (average: 310.16ppm) in brown algae and 156.0-530.4ppm (average: 248.2ppm) in red algae. Especially, that of Iron in green algae showed higher value than in any other. 7) The content of Manganese were in the range of 48-221ppm (average: 157.25ppm) in green algae, 12-65ppm (average: 41ppm) in brown algae and 72-162ppm (average: 121ppm) in red algae. Especially, that of Manganese in brown algae showed lower value than in any other. 8) The content of Zinc were in the range of 191.3-451.1ppm (average: 290.05ppm) in green algae, 89.9-374.2ppm (average: 202.64ppm) in brown algae and 106.4-281.4ppm (average: 188.93ppm) in red algae. 9) The content of Magnesium were in the range of 0.48-1.83% (average: 1.27%) in green algae, 1.04-1.71% (average: 1.21%) in brown algae and 0.42-1.24% (average: 0.097%) in red algae. 10) The content of Fluorine were in the range of 29.2-92.7ppm (average: 53.03ppm) in green algae, 33.3-43.5ppm (average: 39.18ppm) in brown algae and 32.4-59.0ppm (average: 44.84ppm) in red algae.

  • PDF

Hygienic Studies on Agricultural Products in Youngnam districts (Part III) On the contents of Inorganic Compound (영남지방 농산물에 대한 위생학적 연구(제3보) 무기성분 함량에 관하여)

  • 정덕화;김성영;정혜경
    • Journal of Food Hygiene and Safety
    • /
    • v.4 no.3
    • /
    • pp.177-184
    • /
    • 1989
  • Contents of inorganic compounds in various cereals (Rice: 62, Barley: 39, Soybean: 58, Unhulled barley: 59) collected from Youngnam Districts in 1989 were determined by the atomic absorption spectophotometer. The results abtained as follows: The ranges of zinc level in rice, barley, soybean and unhulled barley were 46.91-76.28 ppm, 42.24-77.06 ppm, 73.39-103.69 ppm and 48.08-272.49 ppm, and those of manganes in each samples were 4.96-14.75 ppm, 20.62-16.28 ppm, 23.31-42.488 ppm and 23.52-30.15 ppm respectively. The ranges of iron level in rice, barley, soybean and unhulled barley were 65.38-141.33 ppm, 52.22-133.25 ppm, 106.32-240.20 ppm and 66.44-108.64 ppm, and those of calcium in each samples were 10.25-33.67 ppm, 68.94-136.62 ppm, 492.20-967.84 ppm and 75.30-165.85 ppm respectively. Meanwhile, contents of sodium in rice, barley, soybean and unhulled barley were 291.60-453.60 ppm, 462.25-773.60 ppm, 463.83-792.67 ppm and 777.90-950.90 ppm and those of potassium in above samples were 716.00-1180.60 ppm, 1363.60-1686.00 ppm, 2233.84-2792.67 ppm and 2042.10-2141.46 ppm respectively.

  • PDF

Organochlorine Insecticide Residues of Field Soils and Vegetables in Jeju Island (제주도(濟州道)의 밭토양(土壤) 및 채소류 중 유기염소계(有機鹽素系) 농약잔류(農藥殘留))

  • Lee, Kyu-Seung
    • Applied Biological Chemistry
    • /
    • v.24 no.3
    • /
    • pp.155-160
    • /
    • 1981
  • Residues of some organochlorine insecticides ${\alpha}-BHC$, ${\gamma}-BHC$, heptachlor and heptachlor epoxide of field soils and vegetables in Jeju island were investigated from october, 1979 to november, 1980. Residues in soil ranged in n.d-0.967 (aver.; 0.391) ppm for ${\alpha}-BHC$, n.d-0.590 (aver.; 0.218) ppm for ${\gamma}-BHC$, n.d-0.819 (aver.; 0.163) ppm for heptachlor, and n.d.-0.256 (aver.; 0.034)ppm for heptachlor epoxide. Average residue levels in cabbage were 0.002ppm for ${\alpha}-BHC$, 0.001ppm for ${\gamma}-BHC$, 0.002 ppm for heptachlor, and 0.001ppm for heptachlor epoxide. The levels of the same chemicals were 0.012ppm, 0.004ppm, 0.003ppm and 0.011ppm on carrot, and 0.014 ppm, 0.007ppm, 0.002ppm and trace on garlic, respectively.

  • PDF

Study on the Contents of Trace Elements in Foods (on the Trace Element Contents of Shellfish in Korean coastal Water) (식품중의 미량금속에 관한 연구조사 (연안 견류중의 중금속 함유량에 관하여))

  • 백덕우;권우창;원경풍;김준한;김오한;소유섭;김영주;박건상;성덕화
    • Journal of Food Hygiene and Safety
    • /
    • v.3 no.1
    • /
    • pp.7-18
    • /
    • 1988
  • In 1987, the level of heavy metals were determined ina total of 200 samples of 9 species of shellfish of Korea. The samples were collected at the fish. markets by 10 Public Institute of Health. The samples were whelk (Buccinum striatiBBimum), oyster (Crassostrea gigas), ark shell(Tegillarca granesa), shartnecked clam (Venerupis semidecussta), hard clam (Meretrix lusoria), top shell (Turbo cornutus), abalone (Haliotis gigantea), ark shell (Scapharea broughtonii), sea-mussel (Mytilus conuscus gould), respectively. The levels of total mercury, lead, cadmium, arsenic, copper, zinc and manganese were determined. The total mercury levels were determined by mercury analyzer using the combustion gold amalgamation method. The arsenic level were determined by spectrophotometry using colorimetric sil ver diethyldithiocarbamate method after dry ash dige8tion of the samples with magnesium oxide and magnesium nitrate. The levels of other metals were determined by inductively coupled pluma spectrophotometry after wet digestion of the samples with nitric acid and su1furic acid. The results were summerized as follows; 1. The overallranges and mean(ppm) were; Hg, ND-O.221 (0.036); Pb, 0.05-1.51 (0.37); Cd, 0.02-1.86 (0.61); As, 0.5-3.97 (1.22); Cu, 0.14-54.16 (4.93); Zn, 7.40-207.17 (30.09); Mn, 0.13-s.72 (3.40). 2. The levels of all 6 metals were found to be below the maximum permissible Iimits set by the Japan lor mercury, the Netherland for lead the Hong Kong for cadmium. The Finland for Arsenic no statutory Iimits for Zn and Mn in shellfish in any countries. 3. The results show that all the 9 species of shellfish studied, none have accumulated levels dangerous enough to pose a health problem.roblem.

  • PDF

Organochlorine Residues in/on Garlic Produced in Chungnam Area during $1982{\sim}1983$ (충남지역(忠南地域) 마늘 중(中) 유기염소계(有機鹽素系) 농약잔류수준(農藥殘留水準))

  • Sohn, H.J.;Lee, K.S.
    • Korean Journal of Environmental Agriculture
    • /
    • v.4 no.1
    • /
    • pp.6-10
    • /
    • 1985
  • Residue levels of 10 kinds of organochlorine insectides in/on garlic produced in Chungnam area during $1982{\sim}1983$ were investigated. Residue levels ranged in $trace{\sim}0.004 ppm$ (aver. 0.002 ppm) for ${\alpha}-BHC$, $0.015{\sim}0.176 ppm$ (aver. 0.083 ppm) for ${\gamma}-BHC$, $0.001{\sim}0.008 ppm$ (aver. 0.005 ppm) for heptachlor, ND(not detected) ${\sim}0.006 ppm$ (aver. 0.003 ppm) for aldrin, $trace{\sim}0.011 ppm$(aver. 0.003 ppm) for ${\alpha}-endosulfan$, $ND{\sim}0.004 ppm$ (aver. 0.001 ppm) for heptachlor epoxide, $trace{\sim}0.002 ppm$(aver. 0.001 ppm) for dieldrin, $trace{\sim}0.008 ppm$(aver. 0.001 ppm) for ${\beta}-endosulfan$, and trace for p,p'-DDD and p,p'-DDT.

  • PDF

The Chemical Composition of the Nagdong River Downstream Water (낙동강 하류수의 수질조성에 대하여)

  • WON Jong Hun;LEE Bae Jung
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.14 no.2
    • /
    • pp.47-58
    • /
    • 1981
  • Relationships between the electrical conductivity and the contents of the chloride, sulfate, calcium, magnesium, sodium, potassium and total major inorganic ions, and between each, chemical conservative constituents were calculated with the data which sampled at the lesions of Mulgeum and between Namji and Wondong from March 1974 to April 1980. Semilogarithmic relations were found between the electrical conductivity and the contents of monovalent ions, and logarithmic relations were found between the electrical conductivity and the contents of divalent ions at the both regions. The relational equations between the electrical conductivity $\lambda_{25}$and the contents of the major inorganic ions at Mulgeum are as follows: $log\;Cl(ppm)\;=\;2.37{\cdot}\lambda_{25}(m{\mho}/cm)+0.733{\pm}0.141$, $log\;SO_4(ppm)=1.12{\cdot}log\lambda_{25}(m{\mho}/cm)+2.14{\pm}0.18$, $log\;Ca(ppm)=0.615{\cdot}log\lambda_{25}(m{\mho}/cm)+1.67{\pm}0.12$, $log\;Mg(ppm)=0.756{\cdot}log\lambda_{25}(m{\mho}/cm)+1.27{\pm}0.11$, $log\;Na(ppm)=2.82{\cdot}\lambda_{25}(m{\mho}/cm)+0.551{\pm}0.133$, $log\;K(ppm)=1.33{\cdot}\lambda_{25}(m{\mho}/cm)+0.136{\pm}0.095$, and total inorganic ions $C(ppm)=399{\cdot}\lambda_{25}(m{\mho}/cm)-0.9{\pm}14.6$. The relational equations between the electrical conductivity ($\lambda_{25}$) and the contents of the major inorganic ions at the region between Namji and Wondong a.e as follows: $log\;Cl(ppm)=4.27{\cdot}\lambda_{25}(m{\mho}/cm)+0.380{\pm}0.138$, $log\;SO_4(ppm)=0.915{\cdot}log\lambda_{25}(m{\mho}/cm)+1.95{\pm}0.18$, $log\;Ca(ppm)=0.756{\cdot}log\lambda_{25}(m{\mho}/cm)+1.74{\pm}0.12$, $log\;Mg(ppm)=1.00{\cdot}log\lambda_{25}(m{\mho}/cm)+1.41{\pm}0.10$. $log\;Na(ppm)=2.47{\cdot}\lambda_{25}(m{\mho}/cm)+0.614{\pm}0.065$, $log\;K(ppm)=1.62{\cdot}\lambda_{25}(m{\mho}/cm)+0.030{\pm}0.060$, and total inorganic ions $C(ppm)=323{\cdot}\lambda_{25}(m{\mho}/cm)+11.7{\pm}9.3$. Logarithmic relations were found between each chemical conservative constituents at Mulgeum and the equations are as follows: $log\;Cl(ppm)=0.711{\cdot}log\;SO_4(ppm)+0.488{\pm}0.206$, $log\;Cl(ppm)=0.337{\cdot}log\;Ca(ppm)+0.822{\pm}0.130$, $log\;Cl(ppm)=0.605{\cdot}log\;Mg(ppm)-0.017{\pm}0.154$, $Cl(ppm)=0.676{\cdot}Na(ppm)+2.31{\pm}4.67$, $log\;Cl(ppm)=0.406{\cdot}log\;K(ppm)-0.092{\pm}0.112$, $log\;SO_4(ppm)=0.378{\cdot}log\;Ca(ppm)+0.721{\pm}0.125$, $log\;SO_4(ppm)=0.462{\cdot}log\;Mg(ppm)+0.107{\pm}0.118$, $log\;SO_4(ppm)=0.592{\cdot}log\;Na(ppm)+0.313{\pm}0.191$, $log\;SO_4(ppm)=0.308{\cdot}log\;K(ppm)-0.019{\pm}0.120$, $Ca(ppm)=0.262{\cdot}Mg(ppm)+0.74{\pm}1.71$. $log\;Ca(ppm)=1.10{\cdot}log\;Na(ppm)-0.243{\pm}0.239$, $Ca(ppm)=0.0737{\cdot}K(ppm)+1.26{\pm}0.73$, $log\;Mg(ppm)=0.0950{\cdot}Na(ppm)+0.587{\pm}0.159$, $log\;Mg(ppm)=0.0518{\cdot}K(ppm)+0.111{\pm}0.102$, and $Na(ppm)=0.0771{\cdot}K(ppm)+1.49{\pm}0.59$. Logarithmic relations were found between each chemical conservative constituents except a relationship between the chloride and calcium contents at the region between Namji and Wondong, and the equations are as follows : $log\;Cl(ppm)=0.312{\cdot}log\;SO_4(ppm)+0.907{\pm}0.210$, $log\;Cl(ppm)=0.458{\cdot}log\;Mg(ppm)+0.135{\pm}0.130$, $Cl(ppm)=0.484{\cdot}logNa(ppm)+0.507{\pm}0.081$, $Cl(ppm)=0.0476{\cdot}K(ppm)+1.41{\pm}0.34$, $log\;SO_4(ppm)=0.886{\cdot}log\;Ca(ppm)+0.046{\pm}0.050$, $log\;SO_4(ppm)=0.422{\cdot}log\;Mg(ppm)+0.139{\pm}0.161$, $log\;SO_4(ppm)=0.374{\cdot}log\;Na(ppm)+0.603{\pm}0.140$, $log\;SO_4(ppm)=0.245{\cdot}log\;K(ppm)+0.023{\pm}0.102$, $log\;Ca(ppm)=0.587{\cdot}log\;Mg(ppm)+0.003{\pm}0.088$, $log\;Ca(ppm)=0.892{\cdot}log\;Na(ppm)+0.028{\pm}0.109$, $log\;Ca(ppm)=0.294{\cdot}log\;K(ppm)-0.001{\pm}0.085$, $log\;Mg(ppm)=0.600{\cdot}log\;Na(ppm)+0.674{\pm}0.120$, $log\;Mg(ppm)=0.440{\cdot}log\;K(ppm)+0.038{\pm}0.081$, and $log\;Na(ppm)=0.522{\cdot}log\;K(ppm)-0.260{\pm}0.072$.

  • PDF

Influence of Toxic Heavy Metals on Germination of Rice Seeds and Growth of Rice Seedling (수도생육(水稻生育)에 대한 유해(有害) 중금속(重金屬)의 영향(影響) - 발아 및 묘대기(苗垈期) 생육(生育)에 대하여 -)

  • Kim, B.J.;Ha, Y.L.;Kim, J.O.;Han, K.H.
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.11 no.2
    • /
    • pp.119-126
    • /
    • 1979
  • Rice seeds, suweon 264, were germinated under 5 levels of toxic heavy metals, Cd(0, 0.05, 0.5, 5, 20ppm), Cu(0, 0.05, 0.5, 5, 20, ppm), Cr(0, 0.5, 1, 5, 10ppm), Ni(0, 0.5, 1, 5, 10ppm), Co(0, 0.5, 1, 5, 10ppm), Zn(0, 0.5, 5, 20, 40, ppm), Pb(0, 0.5, 5, 20, 40ppm) and Mn(0, 1, 10, 25, 50, ppm) in culture solution, and then grown with supplying culture solution contained respective concentrations. Germination and growth response to the toxic heavy metals were studied. Results obtained are as follows : 1) The germination injury of rice seeds by excess concentration of toxic heave metal in culture solution occured in Cd and Cu; below 0.05 ppm, Ni; below 0.5 ppm, Mn; below 1.0 ppm, Co and Cr; 0.5-1.0 ppm, and 0.5-5 ppm, Zn and Pb. Thereby, in the order of degrees of the elements toxicity to germination, they were arranged as follows : Cd>Cu>Ni>Co>Cr>Mn>Zn$$\geq_-$$Pb. 2) Toxic heavy metal concentrations in culture solution, which result in decreasing dry weight due to the injury of excess concentration of treated elements, were Cd: below 0.05 ppm, Ni, Cr and Co; below 0.5 ppm, Cu and Zn; 0.5-5 ppm, Pb; 5-20 ppm and Mn; 10-25 ppm. The order was Ni>Cd>Cr>Co>Cu$$\geq_-$$Zn>Pb>Mn. 3) The critical contents of Cd, Ni, Pb, Cu, Zn, Mn, and Co in dry matter, Which result in decreasing dry weight, were considered to be 0.05-15.5, 1.50-25.0, 24.0-28.0, 26.5-62.5, 470-645.0, 231.0-500.0 and below 15.0 ppm, respectively. 4) The contents of Cr, Co, Cd, Pb, Ni, Cu and Zn in dry matter by 0.5 ppm treatment concentration of each heavy metals was trace, 15.0, 17.5, 24.0, 25.0, 84.5 and 470.0 ppm, respectively. Thereby, in the order of each element to uptaked by rice seedlings, they were arranged as follow; Zn>Cu>Ni>Pb>Cd>Co>Cr. 5) The hazardous concentrations of root activity by toxic heavy metals in culture solution were Cd; below 0.05, Cu; 0.05-0.5, Cr; below 0.5, Ni; 0.5-1.0, Co; 0.5-1.0, Zn; above 0.5, Pb; 0.5-5.0 and Mn; 1.0-10.0 ppm. The hazardous degree of root activity by toxic heave metals was in the order of Cd>Cu>Cr>Zn>Ni>Co>Pb>Mn.

  • PDF

Heavy Metal Contents of the Drainage-basin Soil in Daejon Area (대전지방(大田地方) 하천지역(河川地域) 경작토중(耕作土中)의 중금속함량(重金屬含量))

  • Kim, Moon-Kyu;Lee, Kyu-Seung
    • Korean Journal of Environmental Agriculture
    • /
    • v.2 no.2
    • /
    • pp.78-82
    • /
    • 1983
  • Some physico-chemical properties and heavy metal contents of up-land and paddy field soils on the drainage-basin of Daejeon Cheon and Yoodeung Cheon in Daejeon area were investigated. The average contents (and the range) of Pb was 6.75 ppm (2.33-11.65 ppm), Cr; 1.77 ppm (0.58-4.0 ppm), Cd; 0.7pprn (0.09-1.83 ppm), Cu; 9.96 ppm (t-19.36 ppm), and Zn; 19.99 ppm (2.38-47.9 ppm) in up-land soil, and Pb; 7.77 ppm (t-15.5 ppm), Cr; 1.91 ppm (t-9.38 ppm), Cd; 0.21 ppm(t-2.05 ppm), Cu; 11.17 ppm (t-21.96 ppm), and Zn; 18.0l ppm (1.65-40.0ppm) in paddy field soil, respectively.

  • PDF

Effects of Plant Growth Regulators on in vitro Propagation of Cymbidium kanran and Cymbidium hybrida (한란 및 심비디움의 기내 증식에 미치는 생장조절물질의 효과)

  • Kim, Hak-Yoon;Kwon, Soom-Tae
    • Current Research on Agriculture and Life Sciences
    • /
    • v.18
    • /
    • pp.1-7
    • /
    • 2000
  • This study was carried out to determine the effects of plant growth regulators on organogenesis from Cymbidium kanran and Cymbidium hybrida. Optimal rhizome formation from Cymbidium kanran was obtained on MS medium with 10 ppm kinetin+2 ppm NAA. and optimal protocorm formation from Cymbidium hybrida was obtained on MS medium with 10 ppm kinetin+0.05 ppm NAA. However, in this study the optimal media for the callus induction from both explants was not identified. Optimal shoot induction from rhizome of Cymbidium kanran was obtained on MS medium with 10 ppm BA+2 ppm NAA and 5 ppm BA+2 ppm NAA. Optimal shoot induction from protocorm of Cymbidium hybrida was obtained on MS medium with 10 ppm kinetin+2 ppm NAA.

  • PDF