• 제목/요약/키워드: powertrain system

검색결과 167건 처리시간 0.025초

전산유체해석을 이용한 엔진윤활시스템 설계 (Engine Lubrication System Design Using Computational Fluid Dynamic Analysis)

  • 윤정의;심병민;한세범;정연두;김동렬;채경덕;황영택;박종원;윤성호;김용태;박병완
    • Tribology and Lubricants
    • /
    • 제21권4호
    • /
    • pp.165-170
    • /
    • 2005
  • Engine lubrication system has very complex oil flow networks. Therefore it is difficult to evaluate and optimize the system only depending on experimental results. When we plan upgrading the engine performance the engine lubrication system must be considered in the plan. In this paper, engine lubrication system design using computational fluid dynamic analysis was studied. To do this, unsteady transient flow network analysis on the engine oil circuit system was carried out. Finally we discussed the design process in the modified engine lubrication system.

좌표계 연성에 의한 동력전달계 포함 차량 운동 시뮬레이션 연구 (The study of a Vehicle Dynamic Simulation Including Powertrain About the Coordinate System Connectivity)

  • 정일호;양홍익;윤지원;박태원;한형석
    • 한국정밀공학회지
    • /
    • 제22권5호
    • /
    • pp.130-137
    • /
    • 2005
  • Recently, the importance of CAE research is growing with the advances of the automotive and computer industry. In addition, multi-body dynamics and powertrain analysis are the most important factors in improving the vehicle design. Since engine torque with curve-data was used for analyzing full car simulation in the multi-body dynamics system for many years, it is impossible to assess the concurrent analysis of the engine and powertrain element included in a real full car system. In powertrain, since vehicle are usually modeled as a simple mass and a inertia, they can not be seen as real cars. Moreover, it is hard to obtain additional dynamics data other than the longitudinal velocity value in movement. Because of the reason that was previously discussed, it is necessary to consolidate the two parts as one routine program for design and development through the coordinate system connectivity, and presented here is a program named O-DYN. Using an object-oriented language C++, this program has a good structure with the valuable characteristics of objectivity, inheritance, and reusability. The reliability of this multi-body dynamics program is examined by DADS, which is the general dynamics program, using DAE solver and PECE integral function with the common coordinator separation method. As a result, we can obtain a better solution and total dynamics data in either area through this process. This program will be useful for analyzing full car simulation with powertrain.

$4\times2$ 대형 트럭 구동계의 비틀림 주파수 응답 특성 연구 (A Study on the Torsional Frequency Response Characteristic of $4\times2$ Heavy Duty Truck Powertrain)

  • 안병민
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 1998년도 춘계학술대회 논문집
    • /
    • pp.304-309
    • /
    • 1998
  • In recent truck industry, ride quality improvement as well as payload capacity is a very important subject. In order to achieve this goal, it is necessary to study several sub-systems (powertrain, suspension, engine mount, exhaust, etc) of truck which are major components of vehicle. In this research, torsional vibration reduction method of 4$\times$2 truck powertrain is demonstrated by using computer simulation and experiment. First, truck powertrain is modeled as a vibration system and validity of developed model is verified by comparing free vibration results with experiment results. Second, Most key parameters which influence torsional resonance are examined utilizing mode analysis. Finally, frequency responses of truck powertrain are obtained and reduction counterplans of torsional vibration are suggested.

  • PDF

수소연료전지 자동차 열관리 시스템의 상호 영향도 분석을 위한 실험적 연구 (Experimental Study on the Mutual Influence of Thermal Management System for Hydrogen Fuel Cell Vehicle)

  • 이무연;원종필;조중원;이호성
    • 한국수소및신에너지학회논문집
    • /
    • 제22권6호
    • /
    • pp.852-858
    • /
    • 2011
  • This paper is aiming to estimate the mutual influence of the stack cooling performances with the operation modes of the thermal management system for the hydrogen fuel cell vehicles. The heat capacity of the thermal management system was measured by varying the operating modes such as stack cooling heat exchanger only (Mode 1), stack cooling and electric devices cooling heat exchangers (Mode 2), and stack cooling and electric devices cooling heat exchangers with an operation of the condenser (Mode 3).As the results, Performance of the thermal management system (TMS) at Mode 3 decreased up to 34.0%, compared with the result of the Mode 1. In addition, in order to optimize the performance of TMS, the entropy change of stack cooling heat exchanger using irreversibility analysis technique was analyzed with the relationship between entropy generation and entering air velocity of the thermal management system.

신 개념 PHEV 시스템 개발을 위한 동력원 용량 설계 (Component Sizing for Development of Novel PHEV System)

  • 이희윤;강창범;김진성;차석원;박영일
    • 한국자동차공학회논문집
    • /
    • 제24권3호
    • /
    • pp.330-337
    • /
    • 2016
  • In this paper, component sizing and analysis of the novel plug-in hybrid electric vehicle powertrain configuration is conducted. Newly proposed powertrain configuration in prior study has an internal combustion engine and two electric motors. To optimize component size of the vehicle system and reduction gear ratio, component sizing methodology is proposed and conducted. Required power for vehicle's dynamic performance is calculated to decide minimum power requirement of powertrain component combination. Component size of engine and electric motor are optimized using vehicle simulation to maximize fuel economy performance. Optimized powertrain configuration and vehicle simulation results present validation of newly proposed vehicle system.

승차감 해석을 위한 동력전달계와 차량계의 모델링 (Modeling of the Powertrain System and the Vehicle Body for the Analysis of the Driving Comfortability)

  • 박진호;이장무;조한상;공진형;박영일
    • 대한기계학회논문집A
    • /
    • 제24권4호
    • /
    • pp.926-936
    • /
    • 2000
  • Actual and strict definition of the shift quality for the powertrain system equipped an automatic transmission must be understood through the acceleration change of the vehicle body, which the driver directly feels as a shift shock. For this reason, it is necessary to concurrently analyze the characteristics of the powertrain system and the vehicle body. This paper presents the mathematical model of the vehicle body, which is based on the equivalent lumped system, to append to the developed model of the powertrain system. The concept of tire slip is also introduced for the experimental relationship between tire/road and driving force. Using the developed dynamic simulation programs, shift transients characteristics are analyzed. Theoretical results are compared with experimental ones from real car tests in equal conditions in order to prove the validity of presented model. In these tests, the system to measure the vehicle acceleration is used with various speeds and engine throttle sensors. It is expected that the presented modeling techniques can provide good predictions of the vehicle driving comfortability.

ANALYSIS OF PLANETARY GEAR HYBRID POWERTRAIN SYSTEM PART 1: INPUT SPLIT SYSTEM

  • Yang, H.;Cho, S.;Kim, N.;Lim, W.;Cha, S.
    • International Journal of Automotive Technology
    • /
    • 제8권6호
    • /
    • pp.771-780
    • /
    • 2007
  • In recent studies, various types of multi mode electric variable transmissions of hybrid electric vehicles have been proposed. Multi mode electric variable transmission consists of two or more different types of planetary gear hybrid powertrain system(PGHP), which can change its power flow type by means of clutches for improving transmission efficiencies. Generally, the power flows can be classified into three different types such as input split, output split and compound split. In this study, we analyzed power transmission characteristics of the possible six input split systems, and found the suitable system for single or multi mode hybrid powertrain. The input split system used in PRIUS is identified as a best system for single mode, and moreover we identified some suitable systems for dual mode.

내연기관의 저소음 보기류구동 시스템을 위한 통합 개발 방법론 (An integrated development methodology of low noise accessory drive system in internal combustion engines)

  • 박기춘;공진형;이병현
    • 한국음향학회지
    • /
    • 제35권3호
    • /
    • pp.183-191
    • /
    • 2016
  • 자동차의 저소음 보기류 구동 시스템을 개발하는 체계적인 방법론이 전산해석과 리그 실험을 통해 제시되었다. 벨트 구동 소음 예측의 두 가지 난제는 1) 벨트와 풀리 접촉면에서의 스틱-슬립 비선형성과 2) 벨트 구동 시스템과 파워트레인 회전진동계와의 연성이다. 본 연구에서는 최근 개발된 해석 방법을 이용하여 벨트 구동시스템과 엔진 회전진동계를 통합한 해석 모델을 구축하였고, 다양한 파워트레인 운전 조건에서 정합성을 확보하였다. 통합 모델을 이용하여 스틱-슬립 소음이 발생하는 벨트 시스템을 개선할 수 있음을 확인하였다. 또한 새로운 방법론을 통해 신엔진 개념설계에서 NVH (Noise, Vibration and Harshness), 기능, 연비 등을 고려한 개념 설계안을 제시하였다.

자동차 부품용 무도장 메탈릭 플라스틱 소재 개발 (Development of Paint-free Metallic Plastic Material for Automotive Parts)

  • 최민진;조정민;최영호;최민호;이춘수;성한기;이경실;박기훈;황세종
    • Korean Chemical Engineering Research
    • /
    • 제60권2호
    • /
    • pp.295-299
    • /
    • 2022
  • 본 논문에서는 범퍼 스키드 플레이트 및 아웃사이드미러 하우징 부품에 적용되는 polypropylene (PP)와 acrylonitrile styrene acrylate (ASA) 소재를 활용하여 무도장 메탈릭 소재 구현에 대해 연구하였다. 금속 효과를 극대화하기 위해 알루미늄 입자의 종류, 크기, 함량을 최적화하였고 웰드 라인을 은폐하기 위해 종횡비가 상이한 하이브리드 알루미늄 입자를 사용하였다. 또한 부품 표면에 발생되는 플로우 마크를 개선하기 위해 유동성을 제어하였으며 사출 해석을 수행하였다.

교육훈련용 EV 동력 시스템 시뮬레이터 개발에 대한 연구 (A Study on the Development of EV Powertrain System Simulator for Education and Training)

  • 신동준
    • 실천공학교육논문지
    • /
    • 제15권1호
    • /
    • pp.53-61
    • /
    • 2023
  • 근현대 자동차 신산업 분야에서 가장 큰 핵심 과제는 2035년 EU 연합의 배출가스 0%를 목적으로 하는 친환경 차량 개발에 있으며, 이에 따라 전기자동차로 산업이 급변하는 시대에서 EV전기차에 대한 교육훈련이 절실한 상황인데, 본 연구에서는 기존 내연기관차와 동일하게 사용하는 Chassis Platform(Body, Tire 등)을 제외한 핵심적인 EV 파워트레인 시스템 시뮬레이터를 개발함으로써, 기계공학적, 전기공학적, 전자공학적 활용 등 EV 파워트레인 시스템을 이해하고 본 과정을 통해 공학적, 융합적 개발 능력을 키우는 매체로 활용하고자 한다.