• Title/Summary/Keyword: power-of-two coefficients

Search Result 231, Processing Time 0.038 seconds

General Theory of Wave Scattering by Two Separated Particles

  • Park, Byong Chon;Kim, Myung-Whun;Kim, Jin Seung
    • Journal of the Optical Society of Korea
    • /
    • v.18 no.2
    • /
    • pp.188-193
    • /
    • 2014
  • A general theory of scalar wave scattering by two separated particles is developed to give the coefficients of scattering and transmission in the form of recurrence formulae. Iterative applications of the formulae yield the coefficients in the form of power series of the coefficients obtained from single-particle scattering theories, and each term of the of power series can be interpreted as multiple scattering of the wave between the two particles in increasingly higher order.

Design of Optimal Capacity Coefficients of Flow Control Valves in the Hoist Hydraulic System Using the Complex Method (콤플렉스법에 의한 호이스트 유압회로 유량제어밸브의 최적유량계수 설계)

  • Lee, S.R.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.4 no.1
    • /
    • pp.1-6
    • /
    • 2007
  • The typical hydraulic system of hoist is composed of a hydraulic supply unit, a directional control valve, two pilot operated check valves, two flow control valves. The capacity coefficients of flow control valves should be adjusted for the hoist to operate at moderate speed and minimize the hydraulic energy loss. However, it is difficult to adjust the four capacity coefficients of flow control valves by trial and error for optimal operation. The steady state model of the hoist hydraulic system is derived and the optimal capacity coefficients of flow control valves are obtained using the complex method that is one kind of constrained direct search method.

  • PDF

Benchmark Calculations of Lattice Codes for the Doppler Coefficient of MOX Fuel

  • Shin, Ho-Cheol;Bae, Sung-Man;Kim, Yong-Bae;Lee, Sang-Hee
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.05a
    • /
    • pp.46-51
    • /
    • 1996
  • In this study we calculate the infite multiplication factors ($k_{\infty}$) and the Doppler temperature coefficients (DTC) of two mixed-oxide (MOX) fuel rods with different plutonium contents by using PHOENIX-P, HELIOS and CASMO-3 codes. The results were compared against the reference values obtained by MCNP-3A continuous-energy Monte Carlo code. The purpose of this study is to benchmark the accuracy of these lattice codes. The PHOENIX-P's Doppler coefficients calculated were in good agreement with the MCNP results within the Monte-Carlo uncertainty band which is in the order of $\pm$ 10% for the Doppler coefficients..

  • PDF

Models and Experiments for the Main Topologies of MRC-WPT Systems

  • Yang, Mingbo;Wang, Peng;Guan, Yanzhi;Yang, Zhenfeng
    • Journal of Power Electronics
    • /
    • v.17 no.6
    • /
    • pp.1694-1706
    • /
    • 2017
  • Models and experiments for magnetic resonance coupling wireless power transmission (MRC-WPT) topologies such as the chain topology and branch topology are studied in this paper. Coupling mode theory based energy resonance models are built for the two topologies. Complete energy resonance models including input items, loss coefficients, and coupling coefficients are built for the two topologies. The storage and the oscillation model of the resonant energy are built in the time domain. The effect of the excitation item, loss item, and coupling coefficients on MRC systems are provided in detail. By solving the energy oscillation time domain model, distance enhancing models are established for the chain topology, and energy relocating models are established for the branch topology. Under the assumption that there are no couplings between every other coil or between loads, the maximum transmission capacity conditions are found for the chain topology, and energy distribution models are established for the branch topology. A MRC-WPT experiment was carried out for the verification of the above model. The maximum transmission distance enhancement condition for the chain topology, and the energy allocation model for the branch topology were verified by experiments.

Two phase convective heat transfer augmentation in swirl flow with non-boiling (비비등 선회유동에서의 2상 대류열전달 증가)

  • ;;Kim, J. G.
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.10
    • /
    • pp.2586-2594
    • /
    • 1995
  • Two phase flow phenomena are observed in many industrial facilities and make much importance of optimum design for nuclear power plant and various heat exchangers. This experimental study has been investigated the classification of the flow pattern, the local void distribution and convective heat transfer in swirl and non-swirl two phase flow under the isothermal and nonisothermal conditions. The convective heat transfer coefficients in the single phase water flow were measured and compared with the calculated results from the Sieder-Tate correlation. These coefficients were used for comparisons with the two-phase heat transfer coefficients in the flow orientations. The experimental results indicate, that the void probe signal and probability density function of void distribution can used into classify the flow patterns, no significant difference in voidage distribution was observed between isothermal and non-isothermal condition in non-swirl flow, the values of two phase heat transfer coefficients increase when superficial air velocities increase, and the enhancement of the values is observed to be most pronounced at the highest superficial water velocity in non-swirl flow. Also two phase heat transfer coefficients in swirl flow are increased when the twist ratios are decreased.

Application of covariance adjustment to seemingly unrelated multivariate regressions

  • Wang, Lichun;Pettit, Lawrence
    • Communications for Statistical Applications and Methods
    • /
    • v.25 no.6
    • /
    • pp.577-590
    • /
    • 2018
  • Employing the covariance adjustment technique, we show that in the system of two seemingly unrelated multivariate regressions the estimator of regression coefficients can be expressed as a matrix power series, and conclude that the matrix series only has a unique simpler form. In the case that the covariance matrix of the system is unknown, we define a two-stage estimator for the regression coefficients which is shown to be unique and unbiased. Numerical simulations are also presented to illustrate its superiority over the ordinary least square estimator. Also, as an example we apply our results to the seemingly unrelated growth curve models.

Comparison of the first and the second order eigenvalue sensitivity coefficients affected by generator modeling (발전기 모델링 정도에 의한 고유치 일차${\cdot}$이차 감도계수 비교)

  • Kim Deok Young
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.345-347
    • /
    • 2004
  • In small signal stability analysis of power systems, eigenvalue analysis is the most useful method and the detailed modeling of generator has an important effect to the eigenvalues. Generator full model is used for precise dynamic analysis of generators and controllers while two-axis model is used for multi-machine systems because of the reduced order of the state matrix. Also, the eigenvalue sensitivity coefficients are used for optimizing controller parameters to improve system stability. This paper compare the first and second order eigenvalue sensitivity coefficients of controllers using generator full model with those of two-axis model. As a result of an example, the estimated eigenvalues using the first and the second eigenvalue sensitivity coefficients using generator full model is very close to those of state matrix. Also the error ratios throughout a wide range of controller parameters is less than $1\%$.

  • PDF

Geometry Design of a Pitch Controlling Type Horizontal Axis Turbine and Comparison of Power Coefficients (피치각 제어형 수평축 조류 터빈의 형상설계 및 출력계수 비교)

  • Park, Hoon Cheol;Truong, Quang-Tri;Phan, Le-Quang;Ko, Jin Hwan;Lee, Kwang-Soo;Le, Tuyen Quang;Kang, Taesam
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.17 no.3
    • /
    • pp.167-173
    • /
    • 2014
  • In this work, based on the blade element-momentum theory (BEMT), we proposed the geometry of a lab-scale horizontal axis tidal turbine with a diameter of 80cm, which can demonstrate the maximum power coefficient, and investigated the effect of blade pitch angle increase on the power coefficient. For validation of the computed power coefficients by the BEMT, we also computed the power coefficient using the computational fluid dynamics (CFD) for each case. For the CFD, 15 times of the turbine radius was used for the length and diameter of the computational domain, and the open boundary condition was prescribed at the boundary of the computational domain. The maximum power coefficients of the turbine acquired by the BEMT and CFD were about 48%, showing a good agreement. Both of the power coefficients computed by the BEMT and CFD tended to decrease when the blade pitch angle increases. The two power coefficients for a given tip-speed ratio were in good agreement. Through the present study, we have confirmed that we can trust the proposed geometry and the computed power coefficients based on the BEMT.

Analysis of the first order eigenvalue sensitivity affected by generator model (발전기 모델링 정도에 의한 고유치 감도계수에 미치는 영향해석)

  • Cho, Eon-Jung;Lee, Kun-Jae;Kim, Deok-Young
    • Proceedings of the KIEE Conference
    • /
    • 2003.07a
    • /
    • pp.119-121
    • /
    • 2003
  • In small signal stability analysis of power systems, eigenvalue analysis is the most useful method and the detailed modeling of generator gives an important effect to the eigenvalues. Generator full model is used for precise dynamic analysis of generators and controllers while two-axis model is used for multimachine systems because of the reduced order of the state matrix. Also, the eigenvalue sensitivity coefficients are used for optimization of controller parameters to improve system stability. This paper compare the first order eigenvalue sensitivity coefficients of controllers in case of generator full model with those of two-axis model. As a result of an example the estimated eigenvalues using sensitivity coefficients in case of generator full model is very close to those of state matrix within 1% error ratios.

  • PDF

Capacity Analysis of an AF Relay Cooperative NOMA System Using MRC

  • Xie, Xianbin;Bi, Yan;Nie, Xi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.10
    • /
    • pp.4231-4245
    • /
    • 2020
  • Non-orthogonal multiple access (NOMA) is widely studied in both academia and industry due to its high spectral efficiency over orthogonal multiple access (OMA). To effectively improve spectrum efficiency, an amplify-and-forward (AF) cooperative NOMA system is proposed as well as a novel detection scheme is proposed, in which we first perform successive interference cancellation (SIC) twice at U1 for the two signals received from two time slots to remove interference from symbol 2, then two new signals apply max ratio combining (MRC). In addition, a closed-form upper bound approximation for the ergodic capacity of our proposed system is derived. Monte-Carlo simulations and numerical analysis illustrate that our proposed system has better ergodic capacity performance than the conventional cooperative NOMA system with decode-forward (DF) relay, the conventional cooperative NOMA system with AF relay and the proposed AF cooperative NOMA system in [16]. In addition, we can see that ergodic capacity of all NOMA cooperative systems increase with the increase of transmit SNR. Finally, simulations display that power allocation coefficients have little effect on ergodic capacity of all NOMA cooperative systems. This is due to this fact that ergodic capacity of two symbols can be complementary with changing of power allocation coefficients.