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Abstract
Employing the covariance adjustment technique, we show that in the system of two seemingly unrelated

multivariate regressions the estimator of regression coefficients can be expressed as a matrix power series, and
conclude that the matrix series only has a unique simpler form. In the case that the covariance matrix of the
system is unknown, we define a two-stage estimator for the regression coefficients which is shown to be unique
and unbiased. Numerical simulations are also presented to illustrate its superiority over the ordinary least square
estimator. Also, as an example we apply our results to the seemingly unrelated growth curve models.
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1. Introduction

The system of seemingly unrelated regressions (SUR) has been investigated by many authors since
the pioneering works of Zellner (1962, 1963), which can be used to model subtle interactions among
individual statistical relationships. For more details, the readers are referred to Revankar (1974),
Schmidt (1977), Wang (1989), Percy (1992), Liu (2000), Liu (2002). Among these, the cases of
orthogonal regressors (Zeller, 1963) and triangular SUR models (Revankar, 1974) and an SUR with
unequal numbers of observations (Schmidt, 1977) are more impressive. Some examples in the econo-
metrics literature (Srivastava and Giles, 1987) suggest that the SUR model is appropriate and useful
for a wide range of applications. Further, Velu and Richards (2008) focuses on some applications
of reduced-rank model in the context of SUR. Alkhamisi (2010) proposes two SUR type estimators
based on combining the SUR ridge regression and the restricted least squares methods as well as
evaluates their performances by means of some designated criteria. Zhou et al. (2011) also employs
seemingly unrelated nonparametric regression models to fit the multivariate panel data. Shukur and
Zeebari (2012) considers median regression for SUR models with the same explanatory variables and
obtains an interesting feature of the generalized least absolute deviations method. However, this paper
will show some interesting facts about the SUR system by employing the covariance adjustment tech-
nique. We start from the system of seemingly unrelated multivariate regressions (Gupta and Kabe,
1998), namely {

Y1 = X1B1 + E1,
Y2 = X2B2 + E2,

(1.1)
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where Yi (i = 1, 2) are n × q observation variables; Xi (i = 1, 2) are n × pi matrices with full column
rank; Bi (i = 1, 2) are pi × q unknown regression coefficients; E1 and E2 are random error matrices
and the row variable of (E1, E2) follow a common unspecified multivariate distribution with mean
zero and covariance matrix V , where V is a 2 × 2 non-diagonal partitioned matrix and given by

V =
(

V1 D
DT V2

)
, (1.2)

where Vi is the variance-covariance matrix of the row variable of Ei (i = 1, 2) and D denotes the
covariance matrix between the row variable of E1 and the corresponding row variable of E2. The
different rows of (E1, E2) are also assumed to be uncorrelated. The case of multivariate SUR is
common in biological science. For instance, if the ith row of Y1 denotes the observation vector of
the weight of the ith rabbit at q different time points and the ith row of Y2 denotes the observation
vector of the length of the ith rabbit at the same q time points, and the observation values of different
rabbits are uncorrelated, then the multivariate SUR (1.1) reasonably model the interactions among the
observation vectors of weight and length of n rabbits.

If one neglects the correlation between Y1 and Y2, i.e., taking D as zero, then only by the first
equation of the system (1.1), one would obtain the least square estimator (LSE) for Vec(B1) as

V̂ec(B1) =
(
Iq ⊗

(
XT

1 X1

)−1
XT

1

)
Vec(Y1), (1.3)

and correspondingly, the LSE of the coefficients matrix B1 is B̂1 = (XT
1 X1)−1XT

1 Y1, where Vec(A)
denotes the direct operator of matrix A, ⊗, and Iq are the Kronecker product operator and the identity
matrix of q order, respectively.

However, if we denote Y = (Y1,Y2), B = (B1, B2), and E = (E1, E2), then the system (1.1) can also
be represented as:

Vec(Y) =
(

Iq ⊗ X1 0
0 Iq ⊗ X2

)
Vec(B) + Vec(E). (1.4)

Hence, from (1.4), one can obtain the LSE of Vec(B), say Vec(B), and accordingly another esti-
mator for Vec(B1), denoted by Vec(B1), can be proposed since Vec(B)T = (Vec(B1)T ,Vec(B2)T ). We
think it makes sense that Vec(B1) and its corresponding two-stage estimator version Vec(B1)2-stage (in
case of unknown V) should outperform V̂ec(B1) (1.3) since they take the another equation information
on B1 into account.

The covariance adjustment technique is usually employed to obtain an optimal unbiased estimator
of a vector parameter θ via linearly combining an unbiased estimator of θ, say T1, and an unbiased
estimator of a zero vector, say T2 (Rao, 1967; Baksalary, 1991).

Applying the covariance adjustment technique to the estimator V̂ec(B1), which only uses the first
equation information on Vec(B1), we firstly use (Iq ⊗ N2)Vec(Y2) to improve V̂ec(B1) noting E[(Iq ⊗
N2)Vec(Y2)] = (Iq ⊗ N2)(Iq ⊗ X2)Vec(B2) = 0 and obtain V̂ec(B1)(1), secondly we again improve
V̂ec(B1)(1) by (Iq ⊗ N1)Vec(Y1) due to E[(Iq ⊗ N1)Vec(Y1)] = 0 and get V̂ec(B1)(2). Repeating this
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process, we obtain the following estimator sequence (k ≥ 1) for Vec(B1):

V̂ec(B1)(2k−1) = V̂ec(B1)(2k−2) − Cov
(
V̂ec(B1)(2k−2), (Iq ⊗ N2)Vec(Y2)

)
×

[
Cov

(
(Iq ⊗ N2)Vec(Y2)

)]−
(Iq ⊗ N2)Vec(Y2), (1.5)

V̂ec(B1)(2k) = V̂ec(B1)(2k−1) − Cov
(
V̂ec(B1)(2k−1), (Iq ⊗ N1)Vec(Y1)

)
×

[
Cov

(
(Iq ⊗ N1)Vec(Y1)

)]−
(Iq ⊗ N1)Vec(Y1), (1.6)

where V̂ec(B1)(0) = V̂ec(B1), Ni = In − Xi(XT
i Xi)−1XT

i (i = 1, 2), and A− denotes any a generalized
inverse matrix of A.

Note that Cov(Vec(Yi),Vec(Yi)) = Vi ⊗ In (i = 1, 2) and Cov(Vec(Y1),Vec(Y2)) = D⊗ In. By some
algebra computations, we obtain that for k ≥ 1

V̂ec(B1)(2k−1) =

[
Iq⊗

(
XT

1 X1

)−1
XT

1

] k−1∑
i=0

(
DV−1

2 DT V−1
1 ⊗N2N1

)i×
[
Vec(Y1)−

(
DV−1

2 ⊗N2

)
Vec(Y2)

]
, (1.7)

V̂ec(B1)(2k) =

[
Iq ⊗

(
XT

1 X1

)−1
XT

1

] k∑
i=0

(
DV−1

2 DT V−1
1 ⊗ N2N1

)i
Vec(Y1)

−
[
Iq ⊗

(
XT

1 X1

)−1
XT

1

] k−1∑
i=0

(
DV−1

2 DT V−1
1 ⊗ N2N1

)i (
DV−1

2 ⊗ N2

)
× Vec(Y2). (1.8)

Denote V−1 =
(

V11 V12

V21 V22

)
and Q = (V11)−1V12(V22)−1V21. By (1.2) and the inverse of partitioned

matrix, we have

Q =
(
V11

)−1
V12

(
V22

)−1
V21

=
[
V1 − DV−1

2 DT
]
·
[
V1 − DV−1

2 DT
]−1

DV−1
2 ·

(
V2 − DT V−1

1 D
)
· V−1

2 DT
[
V1 − DV−1

2 DT
]−1

= DV−1
2 DT

[(
V1 − DV−1

2 DT
)−1 − V−1

1 DV−1
2 DT

(
V1 − DV−1

2 DT
)−1

]
= DV−1

2 DT V−1
1 , (1.9)

and (V11)−1V12 = −DV−1
2 . Thus we have

Vec(B1) = V̂ec(B1)(∞) = lim
k→∞

V̂ec(B1)(2k−1) = lim
k→∞

V̂ec(B1)(2k)

=

[
Iq ⊗

(
XT

1 X1

)−1
XT

1

] ∞∑
i=0

(Q ⊗ N2N1)i ×
[
Vec(Y1) +

((
V11

)−1
V12 ⊗ N2

)
Vec(Y2)

]
=

[
Iq ⊗

(
XT

1 X1

)−1
XT

1

] Iqn − Q
∞∑

i=0

(Q ⊗ P2P1)i P2N1


×

{
Vec(Y1) +

[(
V11

)−1
V12 ⊗ N2

]
Vec(Y2)

}
, (1.10)

where Pi = In − Ni = Xi(XT
i Xi)−1XT

i and we use the facts that (Q ⊗ P2P1)0 = Iq ⊗ In = Iqn,
(V11)−1(QT )kV11 = Qk for k ≥ 0 and XT

1 (N2N1)k = −XT
1 (P2P1)k−1P2N1 for k ≥ 1.
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Then, we integrate the above conclusions into the following theorem, which indicates the limit of
the covariance adjustment sequence and the covariance of Vec(B1).

Theorem 1. For the system (1.1), the limit of the covariance adjustment sequence of Vec(B1) equals
to Vec(B1), i.e., limk→∞ V̂ec(B1)(k) = Vec(B1), and

Cov
(
Vec(B1)

)
= V1 ⊗

(
XT

1 X1

)−1 −
[
Iq ⊗

(
XT

1 X1

)−1
XT

1

]
·G ·

[
Iq ⊗ X1

(
XT

1 X1

)−1
]
,

where G =
∑∞

i=0[QiDV−1
2 DT ] ⊗ [(P1P2P1)i − (P1P2P1)i+1].

Proof: The first conclusion follows from the above discussion. Denote Vec(B1) = M(Q){Vec(Y1) +
[(V11)−1V12 ⊗ N2]Vec(Y2)} with M(Q) = [Iq ⊗ (XT

1 X1)−1XT
1 ]{Iqn − Q

∑∞
i=0(Q ⊗ P2P1)iP2N1}, we have

Cov
(
Vec(B1)

)
= M(Q)

[
V1⊗In +

(
V11

)−1
V12V2V21

(
V11

)−1⊗N2 + DV21
(
V11

)−1⊗N2 +
(
V11

)−1
V12DT⊗N2

]
MT (Q)

= M(Q)[V1 ⊗ In − QV1 ⊗ N2]MT (Q), (1.11)

where we use the following fact(
V11

)−1
V12V2V21

(
V11

)−1
+ DV21

(
V11

)−1
+

(
V11

)−1
V12DT = −DV−1

2 DT . (1.12)

Together with the expression of M(Q), we have

Cov
(
Vec(B1)

)
=

Iq ⊗
(
XT

1 X1

)−1
XT

1 −
∞∑

i=0

[
Qi+1 ⊗

(
XT

1 X1

)−1
XT

1 (P2P1)iP2N1

]
×

V1 ⊗ X1

(
XT

1 X1

)−1 −
∞∑

i=0

[
V1

(
QT

)i+1 ⊗ N1P2(P1P2)iX1

(
XT

1 X1

)−1
]

−
Iq ⊗

(
XT

1 X1

)−1
XT

1 −
∞∑

i=0

[
Qi+1 ⊗

(
XT

1 X1

)−1
XT

1 (P2P1)iP2N1

]
×

QV1 ⊗ N2X1

(
XT

1 X1

)−1 −
∞∑

i=0

[
QV1

(
QT

)i+1 ⊗ N2N1P2(P1P2)iX1

(
XT

1 X1

)−1
]

= V1 ⊗
(
XT

1 X1

)−1 −
[
Iq ⊗

(
XT

1 X1

)−1
XT

1

]
[QV1 ⊗ N2]

[
Iq ⊗ X1

(
XT

1 X1

)−1
]

+

[
Iq ⊗

(
XT

1 X1

)−1
XT

1

]  ∞∑
i=0

Qi+2V1 ⊗ (P2P1)iP2N1N2

 [Iq ⊗ X1

(
XT

1 X1

)−1
]

+

[
Iq ⊗

(
XT

1 X1

)−1
XT

1

]  ∞∑
i=0

QV1

(
QT

)i+1 ⊗ N2N1P2(P1P2)i

 [Iq ⊗ X1

(
XT

1 X1

)−1
]

+

[
Iq ⊗

(
XT

1 X1

)−1
XT

1

]  ∞∑
i=0

Qi+1 ⊗ (P2P1)iP2N1

∞∑
i=0

V1

(
QT

)i+1 ⊗ N1P2(P1P2)i

 [Iq ⊗ X1

(
XT

1 X1

)−1
]

−
[
Iq ⊗

(
XT

1 X1

)−1
XT

1

]  ∞∑
i=0

Qi+1⊗ (P2P1)iP2N1

∞∑
i=0

QV1

(
QT

)i+1⊗N2N1P2(P1P2)i

 [Iq⊗X1

(
XT

1 X1

)−1
]
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= V1 ⊗
(
XT

1 X1

)−1 −
[
Iq ⊗

(
XT

1 X1

)−1
XT

1

]
[QV1 ⊗ N2]

[
Iq ⊗ X1

(
XT

1 X1

)−1
]

+

[
Iq ⊗

(
XT

1 X1

)−1
XT

1

]  ∞∑
i=0

QV1

(
QT

)i+1 ⊗ P2(P1P2)i+1 −
∞∑

i=0

Qi+2V1 ⊗ (P2P1)i+1


×

[
Iq ⊗ X1

(
XT

1 X1

)−1
]
. (1.13)

Using QV1 = DV−1
2 DT , XT

1 N2X1 = XT
1 (In − P1P2P1)X1, and XT

1 P1 = XT
1 , we have

Cov
(
Vec(B1)

)
= V1 ⊗

(
XT

1 X1

)−1 −
[
Iq ⊗

(
XT

1 X1

)−1
XT

1

] [
DV2DT ⊗ (In − P1P2P1)

] [
Iq ⊗ X1

(
XT

1 X1

)−1
]

−
[
Iq ⊗

(
XT

1 X1

)−1
XT

1

]  ∞∑
i=1

QiDV−1
2 DT ⊗ (P1P2P1)i −

∞∑
i=1

DV−1
2 DT

(
QT

)i ⊗ (P1P2P1)i+1


×

[
Iq ⊗ X1

(
XT

1 X1

)−1
]

= V1⊗
(
XT

1 X1

)−1−
[
Iq⊗

(
XT

1 X1

)−1
XT

1

]  ∞∑
i=0

QiDV−1
2 DT⊗ (P1P2P1)i

∞∑
i=0

DV−1
2 DT

(
QT

)i ⊗ (P1P2P1)i+1


×

[
Iq ⊗ X1

(
XT

1 X1

)−1
]

= V1 ⊗
(
XT

1 X1

)−1 −
[
Iq ⊗

(
XT

1 X1

)−1
XT

1

]  ∞∑
i=0

[
QiDV−1

2 DT
]
⊗

[
(P1P2P1)i − (P1P2P1)i+1

]
×

[
Iq ⊗ X1

(
XT

1 X1

)−1
]
, (1.14)

where the last step uses the facts that (P1P2P1)0 = In and QiDV−1
2 DT = DV−1

2 DT (QT )i for i ≥ 0.
The proof of Theorem 1 is finished. �
Note that Q0DV−1

2 DT = DV−1
2 DT ≥ 0, In − P1P2P1 ≥ 0 and for i ≥ 1

QiDV−1
2 DT = DV−1

2 DT
(
QT

)i

=

 DV−1
2 DT

(
V−1

1 DV−1
2 DT

)k−1
V−1

1

(
DV−1

2 DT V−1
1

)k−1
DV−1

2 DT ≥ 0, i = 2k − 1,

DV−1
2 DT

(
V−1

1 DV−1
2 DT

)k−1
V−1

1 DV−1
2 DT V−1

1

(
DV−1

2 DT V−1
1

)k−1
DV−1

2 DT ≥ 0, i = 2k,

k = 1, 2, . . . , (1.15)

and (P1P2P1)i − (P1P2P1)i+1 ≥ 0. Hence

G =
∞∑

i=0

[
QiDV−1

2 DT
]
⊗

[
(P1P2P1)i − (P1P2P1)i+1

]
≥ 0. (1.16)

Further, since Cov(V̂ec(B1)) = V1 ⊗ (XT
1 X1)−1, we have

Cov
(
Vec(B1)

)
= Cov

(
V̂ec(B1)

)
−

[
Iq ⊗

(
XT

1 X1

)−1
XT

1

]
·G ·

[
Iq ⊗ X1

(
XT

1 X1

)−1
]

≤ Cov
(
V̂ec(B1)

)
, (1.17)
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which means Vec(B1) is superior to V̂ec(B1) in the sense of having less covariance. This result is
exactly consistent with the fact that V̂ec(B1) only uses the first regression information on Vec(B1),
whereas Vec(B1) combines the second regression equation with the first one via covariance adjust-
ment.

2. The characteristics of matrix series

Note that for i = 1, 2, . . . ,

XT
1 (P2P1)i−1P2N1 = 0⇐⇒ XT

1 (P2P1)i−1P2N1N2 = 0. (2.1)

We only need to prove that the right equality implies the left equality. Note that XT
1 (P2P1)i−1

P2N1N2 = 0 concludes XT
1 (P2P1)i−1N2N1N2 = 0, hence one has XT

1 (P2P1)i−1N2N1N2(P1P2)i−1X1 = 0,
thus XT

1 (P2P1)i−1N2N1 = 0, where we use N2
1 = N1. Further, replace N2 by In − P2 and note that

XT
1 N1 = 0 and P1N1 = 0, we have XT

1 (P2P1)i−1P2N1 = 0.
Therefore, (2.1) implies that for i = 1, 2, . . . ,(

XT
1 X1

)−1
XT

1 (P2P1)i−1P2N1 = 0⇐⇒
(
XT

1 X1

)−1
XT

1 (P2P1)i−1P2N1N2 = 0, (2.2)

which further shows that for i = 1, 2, . . . ,

Qi⊗
(
XT

1 X1

)−1
XT

1 (P2P1)i−1P2N1=0⇐⇒ Qi
(
V11

)−1
V12 ⊗

(
XT

1 X1

)−1
XT

1 (P2P1)i−1P2N1N2=0, (2.3)

where we note that Q = DV−1
2 DT V−1

1 and Qi(V11)−1V12 = −QiDV−1
2 and D is the covariance matrix

of E1 and E2, and that both Q and Qi(V11)−1V12 are invertible.
Set

Vec(B1)s =

[
Iq ⊗

(
XT

1 X1

)−1
XT

1

]
Vec(Y1) +

[(
V11

)−1
V12 ⊗

(
XT

1 X1

)−1
XT

1 N2

]
Vec(Y2). (2.4)

The following theorem shows that the matrix series (1.10) only have one degeneration form
Vec(B1)s.

Theorem 2. Vec(B1)s is the unique simpler form of V̂ec(B1)(∞).

Proof: Note that for any a fixed i (i ≥ 1) that: if XT
1 (P2P1)i−1P2N1 = 0, then XT

1 (P2P1)iP2N1 =

XT
1 (P2P1)i−1P2(In − N1)P2N1 = 0. Step by step, we come to

XT
1 (P2P1)k−1P2N1 = 0, k = i + 1, i + 2, . . . . (2.5)

Thus, we find

Qi ⊗
(
XT

1 X1

)−1
XT

1 (P2P1)i−1P2N1 = 0, for any a fixed i (i ≥ 1)

=⇒ Qk ⊗
(
XT

1 X1

)−1
XT

1 (P2P1)k−1P2N1 = 0, k = i + 1, i + 2, . . . . (2.6)
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On the other hand, if for any a fixed i (i ≥ 2) one has XT
1 (P2P1)i−1P2N1 = 0, then it is easy to see

that

XT
1 (P2P1)i−1(In − N2)N1 = 0

=⇒ XT
1 (P2P1)i−1N2N1 = 0

=⇒ XT
1 (P2P1)i−2P2(In − N1)N2N1 = 0

=⇒ XT
1 (P2P1)i−2P2N1N2N1 = 0

=⇒ XT
1 (P2P1)i−2P2N1N2N1P2(P1P2)i−2X1 = 0

=⇒ XT
1 (P2P1)i−2P2N1N2 = 0

=⇒ XT
1 (P2P1)i−2P2N1 = 0, (2.7)

where the last step comes from the fact (2.1). Thus, step by step we conclude that

Qi ⊗
(
XT

1 X1

)−1
XT

1 (P2P1)i−1P2N1 = 0, for any a fixed i (i ≥ 2)

=⇒ Qk ⊗
(
XT

1 X1

)−1
XT

1 (P2P1)k−1P2N1 = 0, k = 1, 2, . . . , i − 1. (2.8)

Combining (2.6) with (2.8), we know that for any a fixed i (i ≥ 1) if

Qi ⊗
(
XT

1 X1

)−1
XT

1 (P2P1)i−1P2N1 = 0, (2.9)

then the infinite series

∞∑
i=1

[
Qi ⊗

(
XT

1 X1

)−1
XT

1 (P2P1)i−1P2N1

]
= 0, (2.10)

and by (2.3), concurrently we conclude that the infinite series

∞∑
i=1

[
Qi

(
V11

)−1
V12 ⊗

(
XT

1 X1

)−1
XT

1 (P2P1)i−1P2N1N2

]
= 0. (2.11)

Hence, V̂ec(B1)(∞) has unique simpler form Vec(B1)s in the sense that if one term in (2.10) or
(2.11) is zero, then both infinite sums turn into zero.

The proof of Theorem 2 is finished. �

3. The properties of two-stage estimator

If the covariance matrix V is unknown, then both V̂ec(B1)(∞) and the simpler form Vec(B1)s are not
available to use. Set X̃ = (X1, X2), we estimate V by

V̂ =
1

n − R
(
X̃
) (

YT
1

YT
2

) (
In − PX̃

)
(Y1,Y2), (3.1)

where R(X̃) is the rank of X̃ and PX̃ = X̃(X̃T X̃)−X̃T .
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Following from E(aT Ab) = trace[ACov(b, a)] + (Ea)T A(Eb) and (In − PX̃)Xi = 0(i = 1, 2), where
a and b denote two random vectors, we have E[YT

i (In−PX̃)Yi] = Vi[n−R(X̃)] (i = 1, 2) and E[YT
1 (In−

PX̃)Y2] = D[n − R(X̃)], which show that

EV̂ =
(

V1 D
DT V2

)
= V. (3.2)

Substituting the estimator V̂ for V in the expressions of V̂ec(B1)(∞) and Vec(B1)s, we obtain the
following two two-stage estimators

V̂ec(B1)(∞)
2-stage = M

(
Q̂
) {

Vec(Y1) +
[
−D̂V̂−1

2 ⊗ N2

]
Vec(Y2)

}
(3.3)

with M(Q̂) = [Iq ⊗ (XT
1 X1)−1XT

1 ]{Iqn − Q̂
∑∞

i=0(Q̂ ⊗ P2P1)iP2N1} and Q̂ = D̂V̂−1
2 D̂T V̂−1

1 , and

Vec(B1)s,2-stage =

[
Iq ⊗

(
XT

1 X1

)−1
XT

1

]
Vec(Y1) +

[
−D̂V̂−1

2 ⊗
(
XT

1 X1

)−1
XT

1 N2

]
Vec(Y2). (3.4)

Similar to Theorem 2, we know that Vec(B1)s,2-stage is the unique simpler form of V̂ec(B1)(∞)
2-stage.

Hence, we focus on the performances of Vec(B1)s,2-stage.
The matrix-variate normal distribution is a commonly used distribution in the class of matrix

elliptically symmetric distributions. It plays an important role in the investigation of multivariate
regression models such as the growth curve model (GCM). In what follows, in order to establish the
unbiasedness of Vec(B1)s,2-stage, we first briefly present the definition of the matrix-variate normal
distribution as well as two related properties and then make some assumptions on the distributions of
random error matrices Ei (i = 1, 2).

Definition 1. A random matrix Z with order n×q is said to follow a matrix-variate normal distribution
if its probability function is of the form

f (Z) = (2π)−
nq
2 [det(Σ)]−

q
2 [det(Ω)]−

n
2 exp

(
−1

2
trace

{
Ω−1[Z − M]TΣ−1[Z − M]

})
,

where M, Σ > 0, and Ω > 0 are n × q, n × n, and q × q matrices, respectively, and det(A) is the
determinant of the square matrix A. In this case, it is usually denoted that Z ∼ Nn,q(M,Σ,Ω).

The following two lemmas point out that the relationship between the matrix-variate and vector-
variate normal distributions and an affine transformation of a matrix-variate normal variable also fol-
lows a matrix-variate normal distribution. The readers are referred to the first chapter of Pan and Fang
(2007) for more details.

Lemma 1. Let Z be a n × q random matrix and z = Vec(Z). Then Z ∼ Nn,q(M,Σ,Ω) if z ∼ Nnq

(Vec(M),Ω ⊗ Σ).

Lemma 2. Suppose Z ∼ Nn,q(M,Σ,Ω), and that C, A1 > 0, and A2 > 0 are given matrices with
orders n × q, n × n, and q × q, respectively. Then A1ZA2 +C ∼ Nn,q(A1MA2 +C, A1ΣAT

1 , A2ΩAT
2 ).

In the following, we assume that in the system (1.1) the random error matrices Ei (i = 1, 2) follow
the matrix-variate normal distribution Nn,q(0, In,Vi), which indicate that the rows of Ei are iid random
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vectors with common distribution Nq(0,Vi) (i = 1, 2), respectively. Thus, the rows of E = (E1, E2) are
iid random vectors with common distribution N2q(0,V), i.e., E ∼ Nn,2q(0, In,V). Hence, by Lemmas
1 and 2 we know that

Vec(Y) = Vec(Y1,Y2) ∼ N2nq

([
Iq ⊗ X1 0

0 Iq ⊗ X2

]
Vec(B),V ⊗ In

)
. (3.5)

Denote Yi = (y(i)
1 , y

(i)
2 , . . . , y

(i)
q ) (i = 1, 2). Then the matrix D̂ = [n−R(X̃)]−1(d̂i j)q×q with the element

d̂i j =
(
y(1)

i

)T [
In − PX̃

]
y(2)

j = (Vec(Y))T
[
Oi,q+ j(2q × 2q) ⊗ (

In − PX̃
)]

Vec(Y), (3.6)

where the matrix Oi,q+ j(2q × 2q) with order 2q × 2q consists of all zeros only except the element in
the ith row and the (q + j)th column is one. Similarly, the (i, j)th element of V̂2 is equal to

(Vec(Y))T
[
Oq+i,q+ j(2q × 2q) ⊗ (

In − PX̃
)]

Vec(Y),

where the 2q × 2q order matrix Oq+i,q+ j(2q × 2q) consists of all zeros only; except the element in the
(q + i)th row and the (q + j)th column is one.

Note that [Iq ⊗ (XT
1 X1)−1XT

1 N2]Vec(Y2) = [0qp1×nq, Iq ⊗ (XT
1 X1)−1XT

1 N2]Vec(Y). Hence, using
XT

1 N2[In − PX̃] = 0 and following from the discriminant condition of independence of the linear
function and quadratic function of normal variables and the following easily verified facts:[

0qp1×nq, Iq ⊗
(
XT

1 X1

)−1
XT

1 N2

]
[V ⊗ In]

[
Oi,q+ j(2q × 2q) ⊗ (

In − PX̃
)]
= 0, (3.7)

and [
0qp1×nq, Iq ⊗

(
XT

1 X1

)−1
XT

1 N2

]
[V ⊗ In]

[
Oq+i,q+ j(2q × 2q) ⊗ (

In − PX̃
)]
= 0. (3.8)

We know that

E
[
Vec(B1)s,2-stage

]
=

[
Iq ⊗

(
XT

1 X1

)−1
XT

1

]
(Iq ⊗ X1)Vec(B1)

+

[(
E

(
−D̂V̂−1

2

))
⊗

(
XT

1 X1

)−1
XT

1 N2

] (
Iq ⊗ X2

)
Vec(B2)

= Vec(B1). (3.9)

Thus, we obtain the following theorem, which states the unbiasedness of the two-stage estimator.

Theorem 3. Under the assumptions that Ei ∼ Nn,q(0, In,Vi) (i = 1, 2), the two-stage estimator
Vec(B1)s,2-stage is unbiased, i.e., E[Vec(B1)s,2-stage] = Vec(B1).

In the following, we refer to Grunfeld’s data in Maddala (1977) and present two simulation studies
to compare the performances of Vec(B1)s,2-stage with those of V̂ec(B1) under the conditions that there
are some known relationships between the design matrices X1 and X2 and no relationships between
X1 and X2, respectively.
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Table 1: Comparisons between the two-stage estimator and the least square estimator

ρ n trace(S (B̂1)) trace(S (B̄1,s,2-stage)) trace(S (B̄1,s))
10 12.7118 12.8775 12.7718

0.2 20 30.0456 30.2155 30.0873
50 141.1215 141.9674 141.3323
10 15.3561 15.4368 15.5200

0.5 20 35.3589 35.3747 35.3775
50 108.2523 108.2895 108.2894
10 7.7018 8.0020 7.9504

0.7 20 42.4375 45.8153 44.6528
50 103.9155 104.3501 104.2045
10 18.6055 18.6758 18.6689

0.9 20 35.6630 37.5563 37.2077
50 119.9993 122.4540 122.2700

(I) The case that X1 = (X2, L)

Where the system (1.1) is of the form Yi = XiBi + Ei (i = 1, 2) with E = (E1, E2) ∼ Nn,4(0, In,V), and

B1 =

 1 1
1 2
1 3

 , B2 =

(
1 6
−3 2

)
, V =


1 0 ρ 0
0 1 0 ρ
ρ 0 1 0
0 ρ 0 1

 . (3.10)

Set S (B1) = (Y1 −X1B1)T (Y1 −X1B1). Note that the estimator B̂1 = (XT
1 X1)−1XT

1 Y1 given by (1.3),
which corresponds to the LSE V̂ec(B1), actually makes the residual sum of squares (in the sense of
nonnegative definite), trace of S (B1), determinant of S (B1) and the largest eigenvalue of S (B1) achieve
their minimums (Muirhead, 1982). Therefore, under the four different criteria of measurement, if
only the first equation Y1 = X1B1 + E1 is used then the LSE of the regression coefficient B1 are
completely identical (Fang and Zhang, 1990). Thus, without loss of generality, we illustrate the
superiorities of Vec(B1)s,2-stage by comparing trace(S (B̂1)) with trace(S (B̄1,s,2-stage)), where B̄1,s,2-stage =

(XT
1 X1)−1XT

1 Y1 + (XT
1 X1)−1XT

1 N2Y2(−D̂V̂−1
2 )T , which corresponds to Vec(B1)s,2-stage. We also present

the values of trace(S (B̄1,s)) for contrast, where B̄1,s = (XT
1 X1)−1XT

1 Y1 + (XT
1 X1)−1XT

1 N2Y2(−DV−1
2 )T

corresponds to (2.4).
In Table 1, based on different combinations of the correlation ρ and sample size, we present some

numerical demonstrations to compare trace(S (B̄1,s,2-stage)) with trace(S (B̂1)) and trace(S (B̄1,s)), which
exhibit the performances of the simplified two-stage estimator Vec(B1)s,2-stage when the sample size is
relatively small and moderate. Consequently, we find that the performance of the two-stage estimator
tends to improve as the sample size increases. However, it also depends on the correlation ρ, and
especially when n ≥ 20 and ρ ≥ 0.5, we easily see that |trace(S (B̄1,s,2-stage)) − trace(S (B̄1,s))| <
|trace(S (B̂1)) − trace(S (B̄1,s))|, which shows that the two-stage estimator Vec(B1)s,2-stage is closer to
Vec(B1)s.

(II) The case that there are no relationships between X1 and X2

In this case we assume that the system (1.1) has the same form as (3.10) but there are no rela-
tionships between X1 and X2. The simulations are presented below. From Table 2, we see that
trace(S (B̄1,s,2-stage)) is getting closer to trace(S (B̄1,s)), which implies that the two-stage estimator
Vec(B1)s,2-stage is becoming better than the LSE V̂ec(B1) as the sample size goes large (n ≥ 20 or
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Table 2: Comparisons between the two-stage estimator and the least square estimator

ρ n trace(S (B̂1)) trace(S (B̄1,s,2-stage)) trace(S (B̄1,s))
10 16.4822 16.7363 16.5106

0.2 20 45.1567 45.3013 45.1656
50 90.6848 90.7475 91.0296
10 11.7975 12.4334 12.0509

0.5 20 30.6931 31.4717 31.2451
50 91.1112 91.1782 91.2101
10 15.0877 15.4275 15.2887

0.7 20 34.0316 34.9262 34.6478
50 78.8424 79.1979 79.4065
10 7.7416 8.8334 9.0277

0.9 20 37.1639 39.6293 38.6530
50 106.1452 106.7684 106.7741

larger), also the fact depends on the value of the correlation ρ (≥ 0.5). This is because that from the
viewpoint of covariance adjustment the one-step covariance adjustment estimator V̂ec(B1)(1), which
is exactly equal to Vec(B1)s, is superior to V̂ec(B1) in the sense of having less covariance even though
there are no relationships between X1 and X2. Hence, the simulation study discloses the tendency
of Vec(B1)s,2-stage performing better, which is consistent with a two-stage estimator that incorporates
more information.

4. An illustrating example

The GCM is a generalized multivariate analysis-of-variance model, which is useful especially for
investigating growth problems on short time series in economics, biology and medical research (see
Lee and Geisser 1972, Pan and Fang 2007). The seemingly unrelated GCMs are defined as{

Y1 = X1B1Z1 + E1,
Y2 = X2B2Z2 + E2,

(4.1)

where Yi are n × q observation matrices, Xi and Zi are known design matrices of full column rank and
full row rank, respectively, and the regression parameters B1 and B2 are unknown. The assumptions
on E1 and E2 are the same as those in the system (1.1).

Therefore, without considering the interactions between the two equations, we obtain the LSE of
B1 from the first equation as

B̂1 =
(
XT

1 X1

)−1
XT

1 Y1V−1
1 ZT

1

(
Z1V−1

1 ZT
1

)−1
, (4.2)

which is unbiased and the corresponding covariance Cov(B̂1) = Cov(Vec(B̂1)) = (Z1V−1
1 ZT

1 )−1 ⊗
(XT

1 X1)−1. However, combining the information of the second equation and the assumption XT
1 X2 = 0,

we obtain the system LSE for B1 as

B̄1 =
(
XT

1 X1

)−1
XT

1

(
Y1V11 + Y2V21

)
ZT

1

(
Z1V11ZT

1

)−1
, (4.3)

which is unbiased and with less covariance

Cov
(
B̄1

)
= Cov

(
Vec

(
B̄1

))
=

(
Z1V11ZT

1

)−1 ⊗
(
XT

1 X1

)−1
, (4.4)

which is less than Cov(B̂1) since V−1
1 ≤ (V1 − DV−1

2 DT )−1 = V11 and correspondingly (Z1V−1
1 ZT

1 )−1 ≥
(Z1V11ZT

1 )−1.
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Table 3: Comparisons between several estimators under the matrix 2 norm

ρ n norm(B̂1 − B1) norm(B̄1,2-stage − B1) norm(B̄1 − B1)
10 0.1931 0.2668 0.1879

0.2 20 0.0183 0.0193 0.0182
50 0.2259 0.2266 0.2205
10 0.2013 0.2283 0.1679

0.5 20 0.0186 0.0177 0.0171
50 0.2557 0.2271 0.2198
10 0.1896 0.1872 0.1383

0.7 20 0.0184 0.0134 0.0127
50 0.2532 0.1820 0.1763
10 0.1923 0.1138 0.0847

0.9 20 0.0173 0.0085 0.0079
50 0.2471 0.1133 0.1103

In the case that the covariance matrix V is unknown, under the assumption that E = (E1, E2) ∼
Nn,2q(0, In,V), we use the same form estimator as that of the equation (3.1) to estimate V , which is
easily shown to be unbiased. Hence, a two-stage estimator for B1 is defined as

B̄1,2-stage =
(
XT

1 X1

)−1
XT

1

(
Y1V̂11 + Y2V̂21

)
ZT

1

(
Z1V̂11ZT

1

)−1
, (4.5)

where V̂11 = (V̂1 − D̂V̂−1
2 D̂T )−1 and V̂21 = −V̂−1

2 D̂T V̂11. Analogous to the previous discussions, we
can establish the unbiasedness of the estimator B̄1,2-stage.

In the following, we illustrate a simulation study to compare the performances of B̄1,2-stage with
those of B̂1 under the matrix 2-norm criterion, where the 2-norm of a matrix A is given by ||A||2 =
||Vec(A)||2 = (

∑
i
∑

j a2
i j)

1/2. The performances of B̄1 are also presented as a contrast. In each simula-
tion, a sample of size n observations is randomly generated from a 2q-variate normal distribution with
mean zero and covariance matrix V , which is considered as the error matrix En×2q = (E1, E2). Next,
B̂1, B̄1,2-stage, and B̄1 are calculated in each simulation. Simulations are repeated 500 times and the
matrix 2-norms of the average values of B̂1 − B1, B̄1,2-stage − B1, and B̄1 − B1 are given in Table 3.

Three cases are studied. The first of them corresponds to n = 10, the second one considers the
case of n = 20 and the third one corresponds to the case of n = 50. All cases adopt the same V as
(3.10), but with the correlation ρ having a number of alternative values.

Simulations for the case (i) with

XT
1 =

 616 −302 1 9 23 19 25 26 17 11
614 −302 27 15 20 26 6 24 25 8
37 −28 1 2 5 −4 −2 9 1 4

 ,
XT

2 =

(
1 4 2 5 6 3 5 2 5 8
2 6 3 4 2 1 6 8 5 3

)
,

B1 =

 1 1
1 2
1 3

 , B2 =

(
1 6
−3 2

)
, Z1 =

(
1 2
3 4

)
, Z2 =

(
1 5
6 0.5

)
.

Simulations for the case (ii) with XT
1 being −948 15 −2654 5 25 35 10 30 45 0 20 5 15 70 65 75 60 90 60 20

−1069 30 −3407 15 80 55 35 85 70 40 25 95 75 5 10 20 90 65 45 100
−1766 60 −2713 100 10 70 75 50 65 90 40 45 5 25 85 55 35 30 80 15
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and

XT
2 =

(
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
2 4 1 6 8 7 12 4 8 4 18 5 3 9 4 7 3 11 6 2

)
,

where B1, B2, Z1, and Z2 are the same as the case (i).
Simulations for the case (iii) with X1 = [a1, a2, a3]50×3 being randomly generated and X2 =

[a4, a5]50×2 being obtained from the null space of XT
1 , and in this case B1, B2, Z1, and Z2 remain the

same as those of the case (i).
From Table 3, except the situations that ρ = 0.2 and ρ = 0.5 with n = 10, we find that norm(B̄1,2-stage

−B1) is uniformly smaller than norm(B̂1 − B1), which shows that the two-stage estimator B̄1,2-stage is
closer to the true value B1 than the LSE B̂1.

5. Concluding remarks

In summary, we have investigated regression coefficients estimation and inference for the system of
two multivariate SURs. Note that we focus on the estimation problem of B1 since the positions of
B1 and B2 are equipotent. In Section 1, we find that together with another equation information the
estimator of regression coefficients can be presented as a matrix power series via the method of covari-
ance adjustment. In Section 2, we further indicate that the matrix series has exactly one simpler form
which is just the one-step covariance adjustment estimator of the regression coefficients. In Section
3, in the case that the covariance matrix of the system is unknown, we illustrate that the degeneration
form of the two-stage estimator sequence is unique, and an unbiased two-stage estimator is proposed
and numerical simulations are also presented to verify its superiority. The results established in the
present paper enrich the existing results since they include Zellner’s univariate SURs as a special case.
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