• Title/Summary/Keyword: power ultrasound

Search Result 194, Processing Time 0.02 seconds

미세조류로부터 색소물질 생산 증대를 위한 추출 조건 최적화 (Optimization of Extraction Conditions to Enhance Production of Bioactive Compounds from Microalgae)

  • 강민호;박제훈;박하영;김소희;김진우
    • 한국수산과학회지
    • /
    • 제56권1호
    • /
    • pp.28-32
    • /
    • 2023
  • We optimized ultrasound-assisted extraction to improve the extraction efficiency of bioactive compounds from the microalgae Acutodesmus reginae. To optimize this extraction process, we investigated the effects of solvent type, solvent concentration, extraction time, extraction number, and extraction power on the production of lutein, α-carotene, β-carotene, and chlorophylls a, and b. After sequential optimization of these main variables, the maximum amount of each compound was extracted at 30℃ with an ultrasound power of 80 W and using 99.5% methanol. Under these optimum conditions, the amount of lutein, α-carotene, β-carotene, and chlorophylls a, and b, were measured as 10.43, 8.66, 3.76, 15.43, and 6.39 mg/g dry matter respectively.

필터재 투과성 효율 증대를 위한 초음파의 활용 (Effect of Sonication on Permeability of Filter Paper)

  • 오세헌;황명기;김형수;김영욱
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2003년도 봄 학술발표회 논문집
    • /
    • pp.647-654
    • /
    • 2003
  • This study investigated the effect of ultrasound on the permeability of the filter paper The investigation involves laboratory experiments, and the laboratory tests were conducted under abroad range of conditions Including energy levels of ultrasonic waves, time for treatment, and temperature. The results of the study show that sonication enhances the permeability of the filter paper significantly. The degree of enhancement varies with sonication power and duration of application. The effect of sonication on permeability with temperature variation and concentration of the test specimens seems not to be significant.

  • PDF

효율적인 주파수 변조된 초음파 파형 발생을 위한 최적화된 시그마 델타 변조 기법 (Optimized Sigma-Delta Modulation Methodology for an Effective FM Waveform Generation in the Ultrasound System)

  • 김학현;한호산;송태경
    • 대한의용생체공학회:의공학회지
    • /
    • 제28권3호
    • /
    • pp.429-440
    • /
    • 2007
  • A coded excitation has been studied to improve the performance for ultrasound imaging in term of SNR, imaging frame rate, contrast to tissue ratio, and so forth. However, it requires a complicated arbitrary waveform transmitter for each active channel that is typically composed of a multi-bit Digital-to-Analog Converter (DAC) and a linear power amplifier (LPA). Not only does the LPA increase the cost and size of a transmitter block, but it consumes much power, increasing the system complexity further and causing a heating-up problem. This paper proposes an optimized 1.5bit fourth order sigma-delta modulation technique applicable to design an efficient arbitrary waveform generator with greatly reduced power dissipation and hardware. The proposed SDM can provide a required SQNR with a low over-sampling ratio of 4. To this end, the loop coefficients are optimized to minimize the quantization noise power in signal band while maintaining system stability. In addition, the decision level for the 1.5 bit quantizer is optimized for a given input waveform, which results in the SQNR improvement of more than 5dB. Computer simulation results show that the SQNR of a FM(frequency modulated) signal generated by using the proposed method is about 26dB, and the peak side-lobe level (PSL) of its compressed waveform on receive is -48dB.

Morphology and mechanical properties of LDPE/PS blends prepared by ultrasound-assisted melt mixing

  • Ryu, Joung Gul;Kim, Hyungsu;Kim, Myung Ho;Lee, Jae Wook
    • Korea-Australia Rheology Journal
    • /
    • 제16권3호
    • /
    • pp.147-152
    • /
    • 2004
  • Ultrasound-assisted melt mixing was applied to blending polystyrene (PS) and low density polyethylene(LDPE). The influence of the ultrasonic irradiation on the morphology and mechanical properties of the blends was investigated. It was observed that the domain sizes of the blend were significantly reduced and phase stability was well sustained even after a thermal treatment. Such morphological feature was consistent with the improvements in mechanical performance of the blends. The desirable results of ultrasonic compatibilization are mainly attributed to the in-situ formation of PS-LDPE copolymers as confirmed by a proper separation experiment. An important relationship between ultrasonic irradiation time and mechanical properties is revealed and an issue on the thermal stability of the blend is discussed.

결함 화상화를 통한 NAUT 특성평가 연구 (The Research on NAUT Characteristics Evaluation by Defection Image)

  • 나선영;김재열
    • Tribology and Lubricants
    • /
    • 제26권6호
    • /
    • pp.341-345
    • /
    • 2010
  • The NAUT(Non contact Air coupled Ultrasonic Testing) is one of the ultrasonic wave inspection methods. It compensates High power ultrasound Pulser Receiver, pre-amp, air probe of high sensitivity in air to generate loss energy by NAUT methods. Generally, in case of ultrasound inspection, it applies contact methods by using couplant. However it can inspect of UT without couplant by this NAUT. The ultrasound transmission reception is composed in stable condition in NAUT. It can inspect high low material or the specimen of rough part, the narrow spot, too. The spot welding is applying the inosculation of automobile component, car body, all boards. The CFRP is necessity of NDE because of the solidity changes material according to lamella tearing. Therefore it checked on realization whether and commercialization in the spot welding and CFRP inspection that the NAUT would be applied them.

공명초음파분광법을 이용한 페롤의 비파괴결함평가 (Nondestructive Evaluation of the Flaw in a Ceramic Ferrule by Resonant Ultrasound Spectroscopy)

  • 김성훈;백경윤;김영남;양인영
    • 한국자동차공학회논문집
    • /
    • 제12권5호
    • /
    • pp.108-117
    • /
    • 2004
  • In this paper, a measuring NDT(nondestructive testing) system using RUS(Resonant Ultrasound Spectroscopy) was built for nondestructive evaluation of the flaw in a ceramic Ferrule. The principle of RUS is that the mechanical resonant frequency of the materials depends on density, and the coefficient of elasticity. The RUS system is the measuring which is to exite specimen and to inspect the difference of natural frequency pattern between acceptable specimen and specimen which has some defects. RUS system is configured of spectrum analyzer, power amplifier, PZT sensor and support frame. For defect evaluation by the RUS, we performed to measure natural frequency of Ferrule, both acceptable and cracked. In the case of Ferrule, the resonant frequency of cracked-Ferrule existed to higher frequency band than acceptable-Ferrule.

Improved Attenuation Estimation of Ultrasonic Signals Using Frequency Compounding Method

  • Kim, Hyungsuk;Shim, Jaeyoon;Heo, Seo Weon
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권1호
    • /
    • pp.430-437
    • /
    • 2018
  • Ultrasonic attenuation is an important parameter in Quantitative Ultrasound and many algorithms have been proposed to improve estimation accuracy and repeatability for multiple independent estimates. In this work, we propose an improved algorithm for estimating ultrasonic attenuation utilizing the optimal frequency compounding technique based on stochastic noise model. We formulate mathematical compounding equations in the AWGN channel model and solve optimization problems to maximize the signal-to-noise ratio for multiple frequency components. Individual estimates are calculated by the reference phantom method which provides very stable results in uniformly attenuating regions. We also propose the guideline to select frequency ranges of reflected RF signals. Simulation results using numerical phantoms show that the proposed optimal frequency compounding method provides improved accuracy while minimizing estimation bias. The estimation variance is reduced by only 16% for the un-compounding case, whereas it is reduced by 68% for the uniformly compounding case. The frequency range corresponding to the half-power for reflected signals also provides robust and efficient estimation performance.

Ultrasound와 Pulsed UV 조사시 $H_{2}O_{2}$ 발생량과 보조제 주입시 bisphenol A, 17${\beta}$-estradiol의 제거에 대한 연구 (A Study of $H_{2}O_{2}$ Production and BPA/17${\beta}$-estradiol Removal by Ultrasound and Pulsed UV in the Presence of Various Catalysts)

  • 한종훈;이성재;윤여민;허남국
    • 상하수도학회지
    • /
    • 제26권2호
    • /
    • pp.313-319
    • /
    • 2012
  • This study investigated the relative degradation of commonly known endocrine-disrupting compounds such as bisphenol A (BPA) and 17${\beta}$-estradiol (E2) using ultrasound (US) and pulsed ultraviolet (PUV) in water. The removal efficiency of BPA and E2 was determined as a function of generating power and $H_{2}O_{2}$ production. The ultrasound and PUV irradiation of the aqueous solution was performed in 3 L and 90 L stainless reactor at a constant temperature of $20^{\circ}C$ with an applied power of 200 W and 2000 W, respectively. The removal of BPA and E2 by US and PUV varied with catalysts. The experiments were conducted under the following conditions: total operating time, 30 min; initial concentration, 1 uM. In the case of E2 (10 min), % removal was 92.5/95.8/87.6/82.4, while % removal of BPA (10 min) was 62.3/82.3/91.1/67.0/64.3 in various conditions (PUV, $PUV+H_2O_2$, PUV+wire mesh, $PUV+TiO_2$ coated wire mesh), respectively.

바이오매스로부터 파클리탁셀 회수를 위한 전통적 용매 추출, 마이크로웨이브를 이용한 추출, 초음파를 이용한 추출 방법 비교 (Comparison of Conventional Solvent Extraction, Microwave-Assisted Extraction, and Ultrasound-Assisted Extraction Methods for Paclitaxel Recovery from Biomass)

  • 김진현
    • Korean Chemical Engineering Research
    • /
    • 제58권2호
    • /
    • pp.273-279
    • /
    • 2020
  • 본 연구에서는 바이오매스로부터 파클리탁셀 회수를 위한 전통적 용매 추출(conventional solvent extraction, CSE), 마이크로웨이브를 이용한 추출(microwave-assisted extraction, MAE), 초음파를 이용한 추출(ultrasound-assisted extraction, UAE) 방법을 비교하였다. 추출 용매 종류(아세톤, 클로로포름, 에탄올, 메탄올, 메틸렌 클로라이드)에 따른 영향을 조사한 결과, 메탄올이 모든 추출 방법에서 가장 적합하였다. 메탄올을 이용한 MAE와 UAE의 경우, 단 1회의 추출로 대부분의 파클리탁셀 회수(>95%)가 가능하였다. 또한 MAE와 UAE의 경우 추출 온도(25-45 ℃), 마이크로웨이브 파워(50-150 W), 초음파 파워(180-380 W)의 증가에 따라 파클리탁셀 회수율이 증가하였다. 또한 SEM 분석을 통해 바이오매스 표면을 조사한 결과, 표면 구조가 CSE의 경우에는 조금 주름진 형태를 보인 반면 MAE와 UAE의 경우에는 강한 충격으로 매우 거칠고 파괴된 형태를 보였다.

초임계유체공정을 이용한 난용성 항진균제의 미세입자 제조 (Preparation of Micro- and Submicron-Particles of a Poorly Water-Soluble Antifungal Drug Using Supercritical Fluid Process)

  • 김석윤;이정민;원병현;정인일;유종훈;임교빈
    • 청정기술
    • /
    • 제16권2호
    • /
    • pp.80-87
    • /
    • 2010
  • 본 연구에서는 초음파가 결합된 초임계유체 입자 제조 기술인 SAS-EM 공정을 이용하여 난용성 항진균제인 이트라코나졸의 미세입자를 제조하였다. 실험에 사용된 SAS-EM 장치의 경우 초음파가 분사노즐에 직접 적용되었다는 점에서 기존의 SAS-EM 공정과 차이가 있으며, 초음파 세기, 공정온도, 용매 등의 여러 공정변수가 미세입자 형성에 미치는 영향을 고찰하였다. 초음파의 세기가 증가할수록 더 작은 크기를 가지는 입자의 생성률이 증가하였으며, SAS-EM 공정으로 제조된 미세입자도 원시료와 마찬가지로 결정구조를 가짐을 확인하였다. 초음파의 영향을 고찰하기 위해 기존의 초임계 ASES 공정과 비교하였으며, SAS-EM 공정에 의해 크기가 더 작은 입자가 형성됨을 확인하였다.