• Title/Summary/Keyword: power series ring

Search Result 67, Processing Time 0.022 seconds

ON ANNIHILATOR IDEALS OF A NEARRING OF SKEW POLYNOMIALS OVER A RING

  • Hashemi, Ebrahim
    • Journal of the Korean Mathematical Society
    • /
    • v.44 no.6
    • /
    • pp.1267-1279
    • /
    • 2007
  • For a ring endomorphism ${\alpha}$ and an ${\alpha}-derivation\;{\delta}$ of a ring R, we study relation between the set of annihilators in R and the set of annihilators in nearring $R[x;{\alpha},{\delta}]\;and\;R_0[[x;{\alpha}]]$. Also we extend results of Armendariz on the Baer and p.p. conditions in a polynomial ring to certain analogous annihilator conditions in a nearring of skew polynomials. These results are somewhat surprising since, in contrast to the skew polynomial ring and skew power series case, the nearring of skew polynomials and skew power series have substitution for its "multiplication" operation.

ANNIHILATING CONTENT IN POLYNOMIAL AND POWER SERIES RINGS

  • Abuosba, Emad;Ghanem, Manal
    • Journal of the Korean Mathematical Society
    • /
    • v.56 no.5
    • /
    • pp.1403-1418
    • /
    • 2019
  • Let R be a commutative ring with unity. If f(x) is a zero-divisor polynomial such that $f(x)=c_f f_1(x)$ with $c_f{\in}R$ and $f_1(x)$ is not zero-divisor, then $c_f$ is called an annihilating content for f(x). In this case $Ann(f)=Ann(c_f )$. We defined EM-rings to be rings with every zero-divisor polynomial having annihilating content. We showed that the class of EM-rings includes integral domains, principal ideal rings, and PP-rings, while it is included in Armendariz rings, and rings having a.c. condition. Some properties of EM-rings are studied and the zero-divisor graphs ${\Gamma}(R)$ and ${\Gamma}(R[x])$ are related if R was an EM-ring. Some properties of annihilating contents for polynomials are extended to formal power series rings.

SPECIAL WEAK PROPERTIES OF GENERALIZED POWER SERIES RINGS

  • Ouyang, Lunqun
    • Journal of the Korean Mathematical Society
    • /
    • v.49 no.4
    • /
    • pp.687-701
    • /
    • 2012
  • Let $R$ be a ring and $nil(R)$ the set of all nilpotent elements of $R$. For a subset $X$ of a ring $R$, we define $N_R(X)=\{a{\in}R{\mid}xa{\in}nil(R)$ for all $x{\in}X$}, which is called a weak annihilator of $X$ in $R$. $A$ ring $R$ is called weak zip provided that for any subset $X$ of $R$, if $N_R(Y){\subseteq}nil(R)$, then there exists a finite subset $Y{\subseteq}X$ such that $N_R(Y){\subseteq}nil(R)$, and a ring $R$ is called weak symmetric if $abc{\in}nil(R){\Rightarrow}acb{\in}nil(R)$ for all a, b, $c{\in}R$. It is shown that a generalized power series ring $[[R^{S,{\leq}}]]$ is weak zip (resp. weak symmetric) if and only if $R$ is weak zip (resp. weak symmetric) under some additional conditions. Also we describe all weak associated primes of the generalized power series ring $[[R^{S,{\leq}}]]$ in terms of all weak associated primes of $R$ in a very straightforward way.

ON THE STRUCTURE OF ZERO-DIVISOR ELEMENTS IN A NEAR-RING OF SKEW FORMAL POWER SERIES

  • Alhevaz, Abdollah;Hashemi, Ebrahim;Shokuhifar, Fatemeh
    • Communications of the Korean Mathematical Society
    • /
    • v.36 no.2
    • /
    • pp.197-207
    • /
    • 2021
  • The main purpose of this paper is to study the zero-divisor properties of the zero-symmetric near-ring of skew formal power series R0[[x; α]], where R is a symmetric, α-compatible and right Noetherian ring. It is shown that if R is reduced, then the set of all zero-divisor elements of R0[[x; α]] forms an ideal of R0[[x; α]] if and only if Z(R) is an ideal of R. Also, if R is a non-reduced ring and annR(a - b) ∩ Nil(R) ≠ 0 for each a, b ∈ Z(R), then Z(R0[[x; α]]) is an ideal of R0[[x; α]]. Moreover, if R is a non-reduced right Noetherian ring and Z(R0[[x; α]]) forms an ideal, then annR(a - b) ∩ Nil(R) ≠ 0 for each a, b ∈ Z(R). Also, it is proved that the only possible diameters of the zero-divisor graph of R0[[x; α]] is 2 and 3.

NILRADICALS OF SKEW POWER SERIES RINGS

  • Hong, Chan-Yong;Kim, Nam-Kyun;Kwak, Tai-Keun
    • Bulletin of the Korean Mathematical Society
    • /
    • v.41 no.3
    • /
    • pp.507-519
    • /
    • 2004
  • For a ring endomorphism $\sigma$ of a ring R, J. Krempa called $\sigma$ a rigid endomorphism if a$\sigma$(a)=0 implies a=0 for a ${\in}$R. A ring R is called rigid if there exists a rigid endomorphism of R. In this paper, we extend the (J'-rigid property of a ring R to the upper nilradical $N_{r}$(R) of R. For an endomorphism R and the upper nilradical $N_{r}$(R) of a ring R, we introduce the condition (*): $N_{r}$(R) is a $\sigma$-ideal of R and a$\sigma$(a) ${\in}$ $N_{r}$(R) implies a ${\in}$ $N_{r}$(R) for a ${\in}$ R. We study characterizations of a ring R with an endomorphism $\sigma$ satisfying the condition (*), and we investigate their related properties. The connections between the upper nilradical of R and the upper nilradical of the skew power series ring R[[$\chi$;$\sigma$]] of R are also investigated.ated.

A Study of Phase Noise Due to Power Supply Noise in a CMOS Ring Oscillator

  • Park Se-Hoon
    • Journal of information and communication convergence engineering
    • /
    • v.3 no.4
    • /
    • pp.184-186
    • /
    • 2005
  • The effect of power supply noise on the phase noise of a ring oscillator is studied. The power supply noise source in series with DC power supply voltage is applied to a 3 stage CMOS ring oscillator. The phase noise due to the power supply noise is modeled by the narrow band phase modulation. The model is verified by the fact that the spectrum of output of ring oscillator has two side bands at the frequencies offset from the frequency of the ring oscillator by the frequency of the power supply noise source. Simulations at several different frequency of the power supply noise reveals that the ring oscillator acts as a low pass filter to the power supply noise. This study, as a result, shows that the phase noise generated by the power supply noise is inversely proportional to the frequency offset from the carrier frequency.

SEMICOMMUTATIVE PROPERTY ON NILPOTENT PRODUCTS

  • Kim, Nam Kyun;Kwak, Tai Keun;Lee, Yang
    • Journal of the Korean Mathematical Society
    • /
    • v.51 no.6
    • /
    • pp.1251-1267
    • /
    • 2014
  • The semicommutative property of rings was introduced initially by Bell, and has done important roles in noncommutative ring theory. This concept was generalized to one of nil-semicommutative by Chen. We first study some basic properties of nil-semicommutative rings. We next investigate the structure of Ore extensions when upper nilradicals are ${\sigma}$-rigid ${\delta}$-ideals, examining the nil-semicommutative ring property of Ore extensions and skew power series rings, where ${\sigma}$ is a ring endomorphism and ${\delta}$ is a ${\sigma}$-derivation.

REDUCED PROPERTY OVER IDEMPOTENTS

  • Kwak, Tai Keun;Lee, Yang;Seo, Young Joo
    • Korean Journal of Mathematics
    • /
    • v.29 no.3
    • /
    • pp.483-492
    • /
    • 2021
  • This article concerns the property that for any element a in a ring, if a2n = an for some n ≥ 2 then a2 = a. The class of rings with this property is large, but there also exist many kinds of rings without that, for example, rings of characteristic ≠2 and finite fields of characteristic ≥ 3. Rings with such a property is called reduced-over-idempotent. The study of reduced-over-idempotent rings is based on the fact that the characteristic is 2 and every nonzero non-identity element generates an infinite multiplicative semigroup without identity. It is proved that the reduced-over-idempotent property pass to polynomial rings, and we provide power series rings with a partial affirmative argument. It is also proved that every finitely generated subring of a locally finite reduced-over-idempotent ring is isomorphic to a finite direct product of copies of the prime field {0, 1}. A method to construct reduced-over-idempotent fields is also provided.

INJECTIVE PROPERTY OF LAURENT POWER SERIES MODULE

  • Park, Sang-Won
    • East Asian mathematical journal
    • /
    • v.17 no.2
    • /
    • pp.367-374
    • /
    • 2001
  • Northcott and McKerrow proved that if R is a left noetherian ring and E is an injective left R-module, then $E[x^{-1}]$ is an injective left R[x]-module. Park generalized Northcott and McKerrow's result so that if R is a left noetherian ring and E is an injective left R-module, then $E[x^{-S}]$ is an injective left $R[x^S]$-module, where S is a submonoid of $\mathbb{N}$($\mathbb{N}$ is the set of all natural numbers). In this paper we extend the injective property to the Laurent power series module so that if R is a ring and E is an injective left R-module, then $E[[x^{-1},x]]$ is an injective left $R[x^S]$-module.

  • PDF