• 제목/요약/키워드: power prediction

검색결과 2,193건 처리시간 0.037초

AirSim을 이용한 화력발전소 고온 환경의 보일러 내부 점검용 드론 개발 및 검증을 위한 시뮬레이션 (Simulation for Development and Validation of Drone for Inspection Inside Boilers in High Temperature Thermal Power Plants Using AirSim)

  • 박상규;정진석;시하영;강범수
    • 한국항공우주학회지
    • /
    • 제49권1호
    • /
    • pp.53-61
    • /
    • 2021
  • 본 논문은 고온 환경의 화력발전소 보일러 내부 점검용 드론 개발을 위한 선행연구로 AirSim을 이용한 고온 환경에서의 시뮬레이션을 통해 드론이 정상적인 비행이 가능한지 검증 하였다. 고온의 비행 환경에서는 공기 밀도, 점성계수 등이 상온과 달라 공력특성이 달라지며 이에 따라 드론의 비행성능 또한 달라진다. 따라서 온도 변화에 따른 프로펠러의 공력 특성의 변화를 확인하기 위해 JBLADE를 통한 프로펠러 해석과 추력 테스트, 전기추진계통 성능예측모델을 통한 동작특성예측을 수행하였다. 그리고 해석 및 성능예측 결과를 AirSim에 적용해 시뮬레이션을 진행하고 결과 분석을 통해 기체 재설계를 진행하였다. 재설계 결과 80℃의 환경에서 호버링 시 필요한 추력을 얻기 위해 재설계 전 최대 출력의 약 65% 사용하던 것이 52%로 감소함을 확인하였다.

Power peaking factor prediction using ANFIS method

  • Ali, Nur Syazwani Mohd;Hamzah, Khaidzir;Idris, Faridah;Basri, Nor Afifah;Sarkawi, Muhammad Syahir;Sazali, Muhammad Arif;Rabir, Hairie;Minhat, Mohamad Sabri;Zainal, Jasman
    • Nuclear Engineering and Technology
    • /
    • 제54권2호
    • /
    • pp.608-616
    • /
    • 2022
  • Power peaking factors (PPF) is an important parameter for safe and efficient reactor operation. There are several methods to calculate the PPF at TRIGA research reactors such as MCNP and TRIGLAV codes. However, these methods are time-consuming and required high specifications of a computer system. To overcome these limitations, artificial intelligence was introduced for parameter prediction. Previous studies applied the neural network method to predict the PPF, but the publications using the ANFIS method are not well developed yet. In this paper, the prediction of PPF using the ANFIS was conducted. Two input variables, control rod position, and neutron flux were collected while the PPF was calculated using TRIGLAV code as the data output. These input-output datasets were used for ANFIS model generation, training, and testing. In this study, four ANFIS model with two types of input space partitioning methods shows good predictive performances with R2 values in the range of 96%-97%, reveals the strong relationship between the predicted and actual PPF values. The RMSE calculated also near zero. From this statistical analysis, it is proven that the ANFIS could predict the PPF accurately and can be used as an alternative method to develop a real-time monitoring system at TRIGA research reactors.

에너지 효율 증대를 위한 에너지 사용량 예측과 에너지 수요이전 모델 연구 (A Study on the Energy Usage Prediction and Energy Demand Shift Model to Increase Energy Efficiency)

  • 김재환;양세모;이강윤
    • 인터넷정보학회논문지
    • /
    • 제24권2호
    • /
    • pp.57-66
    • /
    • 2023
  • 현재, 에너지 효율 향상으로 소비감축을 시행하는 새로운 에너지 시스템이 대두되고 있다. 이에 스마트그리드가 확산되면서 계시별 요금제가 확대되고 있다. 계시별 요금제는 계절별 / 시간별로 요금을 다르게 적용해 사용량에 따라 요금을 내는 요금제이다. 본 연구에서는 에너지 전력 사용량 데이터를 예측하기 위해, 온도/요일/시간/계절 등 외부 요인을 고려하고 시계열 예측 모델인 LSTM을 활용한다. 이러한 에너지 사용량 예측 모델을 기반으로 기기별 사용패턴을 분석하여 전력 에너지를 최대부하시간대에서 경부하시간대로 수요이전 함으로써 에너지 사용요금을 절감한다. 기기별 사용패턴을 분석하기 위해서는 시간대별로 기기의 사용량 패턴을 학습 및 분류하는 clustering 기법을 사용한다. 정리하자면, 본 연구에서는 사용자의 전력 데이터 사용량을 기반으로 사용량과 사용 요금을 예측 및 기기별 사용패턴을 분석하고 분석 기반의 맞춤형 수요이전 서비스를 제공함으로써 사용자에게 요금 절감 효과를 가져다 준다.

유튜브 주식채널의 감성을 활용한 코스피 수익률 등락 예측 (Stock Market Prediction Using Sentiment on YouTube Channels)

  • 조수지;양철원;이기광
    • 산업경영시스템학회지
    • /
    • 제46권2호
    • /
    • pp.102-108
    • /
    • 2023
  • Recently in Korea, YouTube stock channels increased rapidly due to the high social interest in the stock market during the COVID-19 period. Accordingly, the role of new media channels such as YouTube is attracting attention in the process of generating and disseminating market information. Nevertheless, prior studies on the market forecasting power of YouTube stock channels remain insignificant. In this study, the market forecasting power of the information from the YouTube stock channel was examined and compared with traditional news media. To measure information from each YouTube stock channel and news media, positive and negative opinions were extracted. As a result of the analysis, opinion in channels operated by media outlets were found to be leading indicators of KOSPI market returns among YouTube stock channels. The prediction accuracy by using logistic regression model show 74%. On the other hand, Sampro TV, a popular YouTube stock channel, and the traditional news media simply reported the market situation of the day or instead showed a tendency to lag behind the market. This study is differentiated from previous studies in that it verified the market predictive power of the information provided by the YouTube stock channel, which has recently shown a growing trend in Korea. In the future, the results of advanced analysis can be confirmed by expanding the research results for individual stocks.

수산기업의 부실화 요인 및 예측에 관한 연구 (A Study on the Distress Prediction in the Fishery Industry)

  • 이윤원;장창익;홍재범
    • 한국수산경영학회:학술대회논문집
    • /
    • 한국수산경영학회 2007년도 추계학술발표회 및 심포지엄
    • /
    • pp.167-184
    • /
    • 2007
  • The objectives of this paper are to identify the causes of the corporate distress and to develop a distress prediction model with the financial information in fishery industry. In this study, the corporate distress is defined as economic failure and technical insolvency. Economic failure occurs by reduction, shut-down, or change of the business and technical insolvency results from failure to pay the financial debt of companies. The 33 distressed firms from 1991 to 2003 were composed by 14 economic failure companies, 15 technical insolvency companies. 4 companies applied to the both cases. The analysis of distress prediction of fishery companies were accomplished according to the distress definition. The analysis was carried out as two steps. The first step was the univariate analysis, which was used for checking the prediction power of individual financial variable. The t-test is used to identify the differences in financial variables between the distressed group and the non-distressed group. The second step was to develop distress prediction model with logistic regression. The variables showed the significant difference in univariate analysis were selected as the prediction variables. The financial ratios, used in the logistic regression model, were selected by backward elimination method. To test stability of the distress prediction model, the whole sample was divided as three sub-samples, period 1(1990$\sim$1993), period 2(1994$\sim$1997), period 3(1998$\sim$2002). The final model built from whole sample appled each three sub-samples. The results of the logistic analysis were as follows. the growth, profitability, stability ratios showed the significant effect on the distress. the some different result was found in the sub-sample (economic failure and technical insolvency). The growth and the profitability were important to predict the economic failure. The profitability and the activity were important to predict technical insolvency. It means that profitability is the really important factor to the fishery companies.

  • PDF

수산기업의 부실화 요인과 그 예측에 관한 연구 (A Study on the Distress Prediction in the Fishery Industry)

  • 장창익;이윤원;홍재범
    • 수산경영론집
    • /
    • 제39권2호
    • /
    • pp.61-79
    • /
    • 2008
  • The objectives of this paper are to identify the causes of the corporate distress and to develop a distress prediction model with the financial information in fishery industry. In this study, the corporate distress is defined as economic failure and technical insolvency. Economic failure occurs by reduction, shut - down, or change of the business and technical insolvency results from failure to pay the financial debt of companies. The 33 distressed firms from 1991 to 2003 were composed by 14 economic failure companies, 15 technical insolvency companies. 4 companies applied to the both cases. The analysis of distress prediction of fishery companies were accomplished according to the distress definition. The analysis was carried out as two steps. The first step was the univariate analysis, which was used for checking the prediction power of individual financial variable. The t - test is used to identify the differences in financial variables between the distressed group and the non - distressed group. The second step was to develop distress prediction model with logistic regression. The variables showed the significant difference in univariate analysis were selected as the prediction variables. The financial ratios, used in the logistic regression model, were selected by backward elimination method. To test stability of the distress prediction model, the whole sample was divided as three sub-samples, period 1(1990 - 1993), period 2(1994 - 1997), period 3(1998 - 2002). The final model built from whole sample appled each three sub - samples. The results of the logistic analysis were as follows. the growth, profitability, stability ratios showed the significant effect on the distress. the some different result was found in the sub - sample (economic failure and technical insolvency). The growth and the profitability were important to predict the economic failure. The profitability and the activity were important to predict technical insolvency. It means that profitability is the really important factor to the fishery companies.

  • PDF

Condition Assessment for Wind Turbines with Doubly Fed Induction Generators Based on SCADA Data

  • Sun, Peng;Li, Jian;Wang, Caisheng;Yan, Yonglong
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권2호
    • /
    • pp.689-700
    • /
    • 2017
  • This paper presents an effective approach for wind turbine (WT) condition assessment based on the data collected from wind farm supervisory control and data acquisition (SCADA) system. Three types of assessment indices are determined based on the monitoring parameters obtained from the SCADA system. Neural Networks (NNs) are used to establish prediction models for the assessment indices that are dependent on environmental conditions such as ambient temperature and wind speed. An abnormal level index (ALI) is defined to quantify the abnormal level of the proposed indices. Prediction errors of the prediction models follow a normal distribution. Thus, the ALIs can be calculated based on the probability density function of normal distribution. For other assessment indices, the ALIs are calculated by the nonparametric estimation based cumulative probability density function. A Back-Propagation NN (BPNN) algorithm is used for the overall WT condition assessment. The inputs to the BPNN are the ALIs of the proposed indices. The network structure and the number of nodes in the hidden layer are carefully chosen when the BPNN model is being trained. The condition assessment method has been used for real 1.5 MW WTs with doubly fed induction generators. Results show that the proposed assessment method could effectively predict the change of operating conditions prior to fault occurrences and provide early alarming of the developing faults of WTs.

풍력자원평가를 위한 단순지형에서의 육상 기상탑 바람 데이터의 상호 적용 (Mutual Application of Met-Masts Wind Data on Simple Terrain for Wind Resource Assessment)

  • 손진혁;고경남;허종철;김인행
    • 동력기계공학회지
    • /
    • 제21권6호
    • /
    • pp.31-39
    • /
    • 2017
  • In order to examine if met-masts wind data can exchange each other for wind resource assessment, an investigation was carried out in Kimnyeong and Haengwon regions of Jeju Island. The two regions are both simple terrain and 4.31 km away from each other. The one-year wind speed data measured by 70 m-high anemometers of each met-mast of the two regions were analysed in detail. Measure-Correlate-Predict (MCP) method was applied to the two regions using the 10-year Automatic Weather System (AWS) wind data of Gujwa region for creating 10-year Wind Statistics by running WindPRO software. The two 10-year Wind Statistics were applied to the self-met mast point for self prediction of Annual Energy Production (AEP) and Capacity Factor (CF) and the each other's met mast point for mutual prediction of them. As a result, when self-prediction values were reference, relative errors of mutual prediction values were less than 1% for AEP and CF so that met masts wind data under the same condition of this study could exchange each other for estimating accurate wind resource.

신경회로망을 이용한 원전SG 세관 결함크기 예측 (Prediction of Defect Size of Steam Generator Tube in Nuclear Power Plant Using Neural Network)

  • 한기원;조남훈;이향범
    • 비파괴검사학회지
    • /
    • 제27권5호
    • /
    • pp.383-392
    • /
    • 2007
  • 본 논문에서는 신경회로망을 이용하여 원자력 발전소 증기발생기 세관의 결함 깊이와 폭을 예측하는 연구를 수행한다. 결함 크기 추정을 위하여 우선, I-In 형태, I-Out 형태, V-In 형태, V-Out 형태의 4가지 결함형상에 대한 와전류탐상시험(ECT) 신호를 생성한다. 특히, 유한요소법에 기반한 수치해석 기법을 이용하여 여러 가지 폭과 깊이를 갖는 결함 400개의 ECT 신호를 생성한다. 이와 같이 생성된 ECT 신호로부터, 결함 크기와 폭을 예측하기 위한 새로운 특징벡터를 추출하는데, 이 특징벡터에는 최대 임피던스 값을 갖는 점과 최대 임피던스값의 1/2의 값을 갖는 점 사이의 위상각이 포함된다. 추출된 특징벡터를 이용하여 결함의 크기를 예측하기 위해서 하나의 은닉층을 갖는 다층퍼셉트론을 이용하였다. 컴퓨터 모의실험 연구를 통하여 제안된 방법이 우수한 예측성능을 갖는다는 것을 보였다.

Explicit Categorization Ability Predictor for Biology Classification using fMRI

  • Byeon, Jung-Ho;Lee, Il-Sun;Kwon, Yong-Ju
    • 한국과학교육학회지
    • /
    • 제32권3호
    • /
    • pp.524-531
    • /
    • 2012
  • Categorization is an important human function used to process different stimuli. It is also one of the most important factors affecting measurement of a person's classification ability. Explicit categorization, the representative system by which categorization ability is measured, can verbally describe the categorization rule. The purpose of this study was to develop a prediction model for categorization ability as it relates to the classification process of living organisms using fMRI. Fifty-five participants were divided into two groups: a model generation group, comprised of twenty-seven subjects, and a model verification group, made up of twenty-eight subjects. During prediction model generation, functional connectivity was used to analyze temporal correlations between brain activation regions. A classification ability quotient (CQ) was calculated to identify the verbal categorization ability distribution of each subject. Additionally, the connectivity coefficient (CC) was calculated to quantify the functional connectivity for each subject. Hence, it was possible to generate a prediction model through regression analysis based on participants' CQ and CC values. The resultant categorization ability regression model predictor was statistically significant; however, researchers proceeded to verify its predictive ability power. In order to verify the predictive power of the developed regression model, researchers used the regression model and subjects' CC values to predict CQ values for twenty-eight subjects. Correlation between the predicted CQ values and the observed CQ values was confirmed. Results of this study suggested that explicit categorization ability differs at the brain network level of individuals. Also, the finding suggested that differences in functional connectivity between individuals reflect differences in categorization ability. Last, researchers have provided a new method for predicting an individual's categorization ability by measuring brain activation.