DOI QR코드

DOI QR Code

Explicit Categorization Ability Predictor for Biology Classification using fMRI

  • Received : 2012.03.30
  • Accepted : 2012.04.16
  • Published : 2012.06.30

Abstract

Categorization is an important human function used to process different stimuli. It is also one of the most important factors affecting measurement of a person's classification ability. Explicit categorization, the representative system by which categorization ability is measured, can verbally describe the categorization rule. The purpose of this study was to develop a prediction model for categorization ability as it relates to the classification process of living organisms using fMRI. Fifty-five participants were divided into two groups: a model generation group, comprised of twenty-seven subjects, and a model verification group, made up of twenty-eight subjects. During prediction model generation, functional connectivity was used to analyze temporal correlations between brain activation regions. A classification ability quotient (CQ) was calculated to identify the verbal categorization ability distribution of each subject. Additionally, the connectivity coefficient (CC) was calculated to quantify the functional connectivity for each subject. Hence, it was possible to generate a prediction model through regression analysis based on participants' CQ and CC values. The resultant categorization ability regression model predictor was statistically significant; however, researchers proceeded to verify its predictive ability power. In order to verify the predictive power of the developed regression model, researchers used the regression model and subjects' CC values to predict CQ values for twenty-eight subjects. Correlation between the predicted CQ values and the observed CQ values was confirmed. Results of this study suggested that explicit categorization ability differs at the brain network level of individuals. Also, the finding suggested that differences in functional connectivity between individuals reflect differences in categorization ability. Last, researchers have provided a new method for predicting an individual's categorization ability by measuring brain activation.

Keywords

References

  1. Ansari, D. & Coch, D. (2006). Bridge over troubled waters: education and cognitive neuroscience. Trends in Cognitive Sciences, 10(4), 146-151. https://doi.org/10.1016/j.tics.2006.02.007
  2. Ashby, F. G. & Casale, M. B. (2003). The cognitive neuroscience of implicit category learning. Attention and implicit learning, Amsterdam: John Benjamins Publishing Company, 109-141.
  3. Ashby, F. G. & Maddox, W. T. (2005). Human category learning. Annual Review of Psychology, 56, 149-178. https://doi.org/10.1146/annurev.psych.56.091103.070217
  4. Ashby, F. G., Alfonso-Reese, L. A., Turken, A. U., & Waldron, E. M. (1998). A neuropsychological theory of multiple systems in category learning. Psychological Review, 105, 442-481. https://doi.org/10.1037/0033-295X.105.3.442
  5. Boccalettia, S., Latorab, V., Morenod, Y., Chavezf, M., & Hwang, D. U. (2006). Complex networks: structure and dynamics. Physic Reports. 424(4-5), 175-308. https://doi.org/10.1016/j.physrep.2005.10.009
  6. Borg, W. R. & Gall, M. D. (1989). Educational research: An introduction, 5th Ed. New York, NY: Longman Inc.
  7. Byeon, J. H., Lee, J. K., & Kwon, Y. J. (2009). Brain activation pattern and functional connectivity network during classification on the living. Journal of Korean Association for Research in Science Education, 29(7), 751-758.
  8. Chen, C., Xue, G., Dong, Q., Jin, Z., Li, T., Xue, F., Zho, L., & Guo, Y. (2007). Sex determines the neurofunctional predictors of visual word learning. Neuropsychologia, 45, 741-747. https://doi.org/10.1016/j.neuropsychologia.2006.08.018
  9. Choi, Y. Y., Shamosh, N. A., Cho, S. H., Deyoung, C. G., Lee, M. J., Lee, J., Kim, S. I., Cho, Z., Kim, K., Gray, J. R., & Lee, K. H. (2008). Multiple bases of human intelligence revealed by cortical thickness and neural activation. The Journal of Neuroscience, 28(41), 10323-10329. https://doi.org/10.1523/JNEUROSCI.3259-08.2008
  10. Eckert, M. A., Lombardino, L. J., Walczak, A. R., Bonihla, L., Leonard, C. M., & Binder, J. R. (2008). Manual and automated measures of superior temporal gyrus asymmetry: Concordant structural predictors of verbal ability in children. NeuroImage, 41, 813-822. https://doi.org/10.1016/j.neuroimage.2008.03.002
  11. Erickson, M. A. & Kruschke, J. K. (1998). Rules and exemplars in category learning. Journal of Experimental Psychology: General, 127, 107-140.
  12. Evans, A. C., Collins, D. L., Mills, S. R., Brown, E. D., Kelly, R. L., & Peters, T. M. (1993). 3D Statistical neuroanatomical model from 305 MRI volumes. IEEE Conference Record, Nuclear Science Symposium and Medical Imaging Conference (San Francisco). P 1813-1817.
  13. Filoteo, J. V., Maddox, W. T., Simmons, A. N., Ing, A. D., Cagigas, X. E., & Matthews, S. (2005). Cortical and subcortical brain regions involved in rule-based category learning. Neuroreport, 16(2), 111-115. https://doi.org/10.1097/00001756-200502080-00007
  14. Friston, K. J., Frith, C. D., & Frackowiak, R. S. J. (1993). Time-dependent changes in effective connectivity measured with PET. Human Brain Mapping, 1, 69-79. https://doi.org/10.1002/hbm.460010108
  15. Friston, K. J., Holmes, A. P., & Worsley, K. J. (1999). How many subjects constitute a study? NeuroImage, 10, 1-5. https://doi.org/10.1006/nimg.1999.0439
  16. Genovese, C. R., Lazar, N. A., & Nichols, T. (2002). Thresholding of Statistical Maps in Functional Neuroimaging Using the False Discovery Rate. NeuroImage, 15, 870-878. https://doi.org/10.1006/nimg.2001.1037
  17. Harnad, S. (2005). To cognize is to categorize: Cognition is categorization. In C. Lefebvre & H. Cohen (Eds.), Handbook on Categorization, Elservier.
  18. Honey, J. N. & Paxman, H. M. (1986). The importance of taxonomy in biological education at advanced level. Journal of Biological Education, 20, 103-111. https://doi.org/10.1080/00219266.1986.9654795
  19. Huang-Pollock, C. L., Maddox, W. T., & Karalunas, S. L. (2011). Development of implicit and explicit category learning. Journal of Experimental Child Psychology, 109, 321-335. https://doi.org/10.1016/j.jecp.2011.02.002
  20. Jacob, E. K. (2004). Classification and Categorization: A difference that makes a difference. Library Trends, 52(3), 515-540.
  21. Jiang, X., Bradley, E., Rini, R. A., Zeffiro, T., VanMeter, J. & Riesenhuber, M. (2007). Categorization training results in shape and category-selective human neural plasticity. Neuron, 53, 891-903. https://doi.org/10.1016/j.neuron.2007.02.015
  22. Koshino, H., Carpenter, P. A., Minshew, N. J., Cherkassky, V. L., Keller, T. A., & Just, M. A. (2005). Functional connectivity in an fMRI working memory task in high-functioning autism Neuroimage 24, 810-21. https://doi.org/10.1016/j.neuroimage.2004.09.028
  23. Kwon, Y. J., Choi, S. J., Park, Y. B. & Jeong, J. S. (2003). Scientific thinking types and processes generated in inductive inquiry by college students. Journal of Korean Association for Research in Science Education, 23(3), 286-298.
  24. Kwon, Y. J., Lee, J. K., & Lee, I. S. (2007). Development of the classification ability quotient equation through the analysis of science teachers' classification knowledge generated in the pollen classification task. The Secondary Education Research, 55(3), 21-43.
  25. Loring, D. W., Meador, K. J., Allison, J. D., Pillai, J. J., Lavin, T., Lee, G. P., Balan, A., & Dave, V. (2002). Now you see it, now you don' t: statistical and methodological considerations in fMRI. Epilepsy & Behavior, 3, 539-547. https://doi.org/10.1016/S1525-5050(02)00558-9
  26. Maddox, W. T., Pacheco, J., Reeves, M., Zhu, B., & Schnyer, D. M. (2010). Neuropsychologia, 48, 2998-3008. https://doi.org/10.1016/j.neuropsychologia.2010.06.008
  27. Margulis, L. (1981). How many kingdoms? Current views of biological classification. The American Biology Teacher, 43, 482-489. https://doi.org/10.2307/4447368
  28. Mayr, E. (1997). This is biology: the science of the living world. Cambridge. Massachusetts: The belknap press of Harvard University press.
  29. Pickering, A. D. (1997). New approaches to the study of amnesic patients: What can a neurofunctional philosophy and neural network methods offer? Memory, 5, 255-300. https://doi.org/10.1080/741941146
  30. Schmithorst, V. J. & Holland, S. K. (2006). Functional MRI evidence for disparate developmental processes underlying intelligence in boys and girls. NeuroImage, 31, 1366-1379. https://doi.org/10.1016/j.neuroimage.2006.01.010
  31. Schnyer, D. M., Maddox, W. T., Ell, S., Davis, S., Pacheco, J., & Verfaellie, M. (2009). Prefrontal contributions to rule-based and information-integration category learning. Neuropsychologia, 47(13), 2995-3006. https://doi.org/10.1016/j.neuropsychologia.2009.07.011
  32. Seger, C. A. (2008). How do the basal ganglia contribute to categorization? Their roles in generalization, response selection, and learning via feedback. Neuroscience and Biobehavioral Review, 32, 265-278. https://doi.org/10.1016/j.neubiorev.2007.07.010
  33. Talairach, J. & Tournoux, P. (1988). Co-Planner stereotaxic atlas of the human brain. New York: Thieme Medical publisher, Inc.
  34. Worsley, K. J. & Friston, K. J. (1995). Analysis of fMRI time-series revisited-again. NeuroImage 2, 173-181. https://doi.org/10.1006/nimg.1995.1023