Prediction of Defect Size of Steam Generator Tube in Nuclear Power Plant Using Neural Network

신경회로망을 이용한 원전SG 세관 결함크기 예측

  • Han, Ki-Won (Department of Electrical Engineering, Soongsil University) ;
  • Jo, Nam-Hoon (Department of Electrical Engineering, Soongsil University) ;
  • Lee, Hyang-Beom (Department of Electrical Engineering, Soongsil University)
  • Published : 2007.10.30

Abstract

In this paper, we study the prediction of depth and width of a defect in steam generator tube in nuclear power plant using neural network. To this end, we first generate eddy current testing (ECT) signals for 4 defect patterns of SG tube: I-In type, I-Out type, V-In type, and V-Out type. In particular, we generate 400 ECT signals for various widths and depths for each defect type by the numerical analysis program based on finite element modeling. From those generated ECT signals, we extract new feature vectors for the prediction of defect size, which include the angle between the two points where the maximum impedance and half the maximum impedance are achieved. Using the extracted feature vector, multi-layer perceptron with one hidden layer is used to predict the size of defects. Through the computer simulation study, it is shown that the proposed method achieves decent prediction performance in terms of maximum error and mean absolute percentage error (MAPE).

본 논문에서는 신경회로망을 이용하여 원자력 발전소 증기발생기 세관의 결함 깊이와 폭을 예측하는 연구를 수행한다. 결함 크기 추정을 위하여 우선, I-In 형태, I-Out 형태, V-In 형태, V-Out 형태의 4가지 결함형상에 대한 와전류탐상시험(ECT) 신호를 생성한다. 특히, 유한요소법에 기반한 수치해석 기법을 이용하여 여러 가지 폭과 깊이를 갖는 결함 400개의 ECT 신호를 생성한다. 이와 같이 생성된 ECT 신호로부터, 결함 크기와 폭을 예측하기 위한 새로운 특징벡터를 추출하는데, 이 특징벡터에는 최대 임피던스 값을 갖는 점과 최대 임피던스값의 1/2의 값을 갖는 점 사이의 위상각이 포함된다. 추출된 특징벡터를 이용하여 결함의 크기를 예측하기 위해서 하나의 은닉층을 갖는 다층퍼셉트론을 이용하였다. 컴퓨터 모의실험 연구를 통하여 제안된 방법이 우수한 예측성능을 갖는다는 것을 보였다.

Keywords

References

  1. E. E. Kriezis, T. D. Tsiboukis, S. M. Panas and J. A. Tegopoulos, 'Eddy currents: Theory and applications,' Proceedings of the IEEE, Vol. 80, No. 10, pp. 1559-1589, (1992) https://doi.org/10.1109/5.168666
  2. H. B. Lee and D. H. Kim, 'Impedance calculation for a plate with crack in eddy current NDT using 3D indirect BIEM,' IEEE Transactions on Magnetics, Vol. 36, No. 5, pp. 3131-3133, (2000) https://doi.org/10.1109/20.908709
  3. K. Miya, 'Recent advancement of electromagnetic nondestructive inspection technology in japan,' IEEE Transactions on Magnetics, Vol. 38, No. 2, pp. 321-326, (2002) https://doi.org/10.1109/20.996088
  4. M. Rebican, Z. Chen, N. Yusa, L. Janousek and K. Miya, 'Shape reconstruction of multiple cracks from ECT signals by means of a stochastic method,' IEEE Transactions on Magnetics, Vol. 42, No. 4, pp. 1079-1082, (2006) https://doi.org/10.1109/TMAG.2006.870967
  5. H. Fukutomi, T. Takagi, J. Tani, M. Hashimoto, J. Shimone and Y. Harada, 'Numerical evaluation of ECT impedance signal due to minute cracks,' IEEE Trans. Magnetics, Vol. 33, No. 2, part 2, pp. 2123-2126, (1997)
  6. C. Gangzhu, A. Yamaguchi and K. Miya, 'A novel signal processing technique for eddy-current testing of steam generator tubes,' IEEE Trans. Magnetics, Vol. 34, No. 3, pp. 642-648, (1998) https://doi.org/10.1109/20.668059
  7. S. J. Song and Y. K. Shin, 'Eddy current flaw characterization in tubes by neural networks and finite element modeling,' NDT & E International, Vol. 33, No.4, pp. 233-243, (2000) https://doi.org/10.1016/S0963-8695(99)00046-8
  8. 조남훈, 이향범, 한기원, 송성진 '신경회로망을 이용한 원전SG 세관 결함패턴 분류성능 향상기법', 전기학회 논문지, Vol. 56, No. 7, pp.1224-1230, July, (2007)
  9. H. Haoyu and T. Takagi, 'Inverse analyses for natural and multicracks using signals from adifferential transmit-receive ECT probe,' IEEE Trans. Magnetics, Vol. 38, No. 2, part 1, pp. 1009-1012, (2002) https://doi.org/10.1109/20.996259
  10. M. Rebican, N. Yusa, Z. Chen, K. Miya, T. Uchimoto and T. Takagi, 'Reconstruction of multiple cracks in an ECT round-robin test,' International Journal of Applied Electromagnetics and Mechanics, Vol. 19, No. 1-4, pp. 399-404, (2004)
  11. M. T. Hagan, H. B. Demuth and M. H. Beale, Neural Network Design, PWS Pub. Co, (1995)
  12. S. Haykin, Neural Networks, New Jersey: Prentic e-Hall, (1999)