• Title/Summary/Keyword: power prediction

Search Result 2,166, Processing Time 0.033 seconds

Pipeline wall thinning rate prediction model based on machine learning

  • Moon, Seongin;Kim, Kyungmo;Lee, Gyeong-Geun;Yu, Yongkyun;Kim, Dong-Jin
    • Nuclear Engineering and Technology
    • /
    • v.53 no.12
    • /
    • pp.4060-4066
    • /
    • 2021
  • Flow-accelerated corrosion (FAC) of carbon steel piping is a significant problem in nuclear power plants. The basic process of FAC is currently understood relatively well; however, the accuracy of prediction models of the wall-thinning rate under an FAC environment is not reliable. Herein, we propose a methodology to construct pipe wall-thinning rate prediction models using artificial neural networks and a convolutional neural network, which is confined to a straight pipe without geometric changes. Furthermore, a methodology to generate training data is proposed to efficiently train the neural network for the development of a machine learning-based FAC prediction model. Consequently, it is concluded that machine learning can be used to construct pipe wall thinning rate prediction models and optimize the number of training datasets for training the machine learning algorithm. The proposed methodology can be applied to efficiently generate a large dataset from an FAC test to develop a wall thinning rate prediction model for a real situation.

Routing Protocol for Hybrid Ad Hoc Network using Energy Prediction Model (하이브리드 애드 혹 네트워크에서의 에너지 예측모델을 이용한 라우팅 알고리즘)

  • Kim, Tae-Kyung
    • Journal of Internet Computing and Services
    • /
    • v.9 no.5
    • /
    • pp.165-173
    • /
    • 2008
  • Hybrid ad hoc networks are integrated networks referred to Home Networks, Telematics and Sensor networks can offer various services. Specially, in ad hoc network where each node is responsible for forwarding neighbor nodes' data packets, it should net only reduce the overall energy consumption but also balance individual battery power. Unbalanced energy usage will result in earlier node failure in overloaded nodes. it leads to network partitioning and reduces network lifetime. Therefore, this paper studied the routing protocol considering efficiency of energy. The suggested algorithm can predict the status of energy in each node using the energy prediction model. This can reduce the overload of establishing route path and balance individual battery power. The suggested algorithm can reduce power consumption as well as increase network lifetime.

  • PDF

A Study on the Performance Prediction Technique for Small Hydro Power Plants (소수력발전소의 성능예측 기법)

  • Park, Wan-Soon;Lee, Chul-Hyung
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.14 no.1
    • /
    • pp.61-68
    • /
    • 2003
  • This paper presents the methodology to analyze flow duration characteristics and performance prediction technique for small hydro power(SHP) Plants and its application. The flow duration curve can be decided by using monthly rainfall data at the most of the SHP sites with no useful hydrological data. It was proved that the monthly rainfall data can be characterized by using the cumulative density function of Weibull distribution and Thiessen method were adopted to decide flow duration curve at SHP plants. And, the performance prediction technique has been studied and development. One SHP plant was selected and performance characteristics was analyzed by using the developed technique, Primary design specfications such as design flowrate, plant capacity, operational rate and annual electricity production for the SHP plant were estimated, It was found that the methodology developed in this study can be a useful tool to predict the performance of SHP plants and candidate sites in Korea.

Classification Methods for Automated Prediction of Power Load Patterns (전력 부하 패턴 자동 예측을 위한 분류 기법)

  • Minghao, Piao;Park, Jin-Hyung;Lee, Heon-Gyu;Ryu, Keun-Ho
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2008.06c
    • /
    • pp.26-30
    • /
    • 2008
  • Currently an automated methodology based on data mining techniques is presented for the prediction of customer load patterns in long duration load profiles. The proposed our approach consists of three stages: (i) data pre-processing: noise or outlier is removed and the continuous attribute-valued features are transformed to discrete values, (ii) cluster analysis: k-means clustering is used to create load pattern classes and the representative load profiles for each class and (iii) classification: we evaluated several supervised learning methods in order to select a suitable prediction method. According to the proposed methodology, power load measured from AMR (automatic meter reading) system, as well as customer indexes, were used as inputs for clustering. The output of clustering was the classification of representative load profiles (or classes). In order to evaluate the result of forecasting load patterns, the several classification methods were applied on a set of high voltage customers of the Korea power system and derived class labels from clustering and other features are used as input to produce classifiers. Lastly, the result of our experiments was presented.

  • PDF

A History-Based Mobility Prediction Algorithm for Vertical Handover (Vertical 핸드오버를 위한 과거 이동 경로 기반의 이동성 예측 알고리즘)

  • Joe, In-Whee;Hong, Sung-Chan
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.5A
    • /
    • pp.536-541
    • /
    • 2008
  • This paper proposes a mobility prediction algorithm for the effective handover among hybrid networks. The proposed algorithm is consisted of two mechanisms to predict a mobile terminal's path. First, the mobile terminal will be checking its received signal power level. Then the mobile terminal will judge its path in some network. Second, if the mobile terminal change its path suddenly, it will be dealing with this situation appropriately using the mobile terminal's speed. This paper introduces existing researches and the proposed algorithm. Finally, our algorithm is compared with existing approaches in terms of the handover delay by using the network simulator OPNet version 10.0.

Leak flow prediction during loss of coolant accidents using deep fuzzy neural networks

  • Park, Ji Hun;An, Ye Ji;Yoo, Kwae Hwan;Na, Man Gyun
    • Nuclear Engineering and Technology
    • /
    • v.53 no.8
    • /
    • pp.2547-2555
    • /
    • 2021
  • The frequency of reactor coolant leakage is expected to increase over the lifetime of a nuclear power plant owing to degradation mechanisms, such as flow-acceleration corrosion and stress corrosion cracking. When loss of coolant accidents (LOCAs) occur, several parameters change rapidly depending on the size and location of the cracks. In this study, leak flow during LOCAs is predicted using a deep fuzzy neural network (DFNN) model. The DFNN model is based on fuzzy neural network (FNN) modules and has a structure where the FNN modules are sequentially connected. Because the DFNN model is based on the FNN modules, the performance factors are the number of FNN modules and the parameters of the FNN module. These parameters are determined by a least-squares method combined with a genetic algorithm; the number of FNN modules is determined automatically by cross checking a fitness function using the verification dataset output to prevent an overfitting problem. To acquire the data of LOCAs, an optimized power reactor-1000 was simulated using a modular accident analysis program code. The predicted results of the DFNN model are found to be superior to those predicted in previous works. The leak flow prediction results obtained in this study will be useful to check the core integrity in nuclear power plant during LOCAs. This information is also expected to reduce the workload of the operators.

Strategy to coordinate actions through a plant parameter prediction model during startup operation of a nuclear power plant

  • Jae Min Kim;Junyong Bae;Seung Jun Lee
    • Nuclear Engineering and Technology
    • /
    • v.55 no.3
    • /
    • pp.839-849
    • /
    • 2023
  • The development of automation technology to reduce human error by minimizing human intervention is accelerating with artificial intelligence and big data processing technology, even in the nuclear field. Among nuclear power plant operation modes, the startup and shutdown operations are still performed manually and thus have the potential for human error. As part of the development of an autonomous operation system for startup operation, this paper proposes an action coordinating strategy to obtain the optimal actions. The lower level of the system consists of operating blocks that are created by analyzing the operation tasks to achieve local goals through soft actor-critic algorithms. However, when multiple agents try to perform conflicting actions, a method is needed to coordinate them, and for this, an action coordination strategy was developed in this work as the upper level of the system. Three quantification methods were compared and evaluated based on the future plant state predicted by plant parameter prediction models using long short-term memory networks. Results confirmed that the optimal action to satisfy the limiting conditions for operation can be selected by coordinating the action sets. It is expected that this methodology can be generalized through future research.

Relative humidity prediction of a leakage area for small RCS leakage quantification by applying the Bi-LSTM neural networks

  • Sang Hyun Lee;Hye Seon Jo;Man Gyun Na
    • Nuclear Engineering and Technology
    • /
    • v.56 no.5
    • /
    • pp.1725-1732
    • /
    • 2024
  • In nuclear power plants, reactor coolant leakage can occur due to various reasons. Early detection of leaks is crucial for maintaining the safety of nuclear power plants. Currently, a detection system is being developed in Korea to identify reactor coolant system (RCS) leakage of less than 0.5 gpm. Typically, RCS leaks are detected by monitoring temperature, humidity, and radioactivity in the containment, and a water level in the sump. However, detecting small leaks proves challenging because the resulting changes in the containment humidity and temperature, and the sump water level are minimal. To address these issues and improve leak detection speed, it is necessary to quantify the leaks and develop an artificial intelligence-based leak detection system. In this study, we employed bidirectional long short-term memory, which are types of neural networks used in artificial intelligence, to predict the relative humidity in the leakage area for leak quantification. Additionally, an optimization technique was implemented to reduce learning time and enhance prediction performance. Through evaluation of the developed artificial intelligence model's prediction accuracy, we expect it to be valuable for future leak detection systems by accurately predicting the relative humidity in a leakage area.

Dynamic performance prediction of a Supercritical oil firing boiler - Load Runback simulation in a 650MWe thermal power plant (초임계 오일 연소 보일러의 동특성 예측 연구 - 650MWe급 화력발전소의 Load Runback 모사)

  • Yang, Jongin;Kim, Jungrae
    • 한국연소학회:학술대회논문집
    • /
    • 2014.11a
    • /
    • pp.19-20
    • /
    • 2014
  • Boiler design should be desinged to maximize thermal efficiency of the system under imposed load requirement and a boiler should be validated for transient operation. If a proper prediction is possible on the transient behavior and transient characteristics of a boiler, one may asses the performance of boiler component, control logics and operation procedures. In this work, dynamic modeling method of boiler is presented and dynamic simulation of load runback scenario was carried out on suprecritical oil-firing boiler.

  • PDF

Evaluation of Prediction Methods for Containment Integrated Leakage Rate (격납건물 종합누설률 예측방법 평가)

  • Yang, Seung-Ok;Lee, Kwang-Dae;Oh, Eung-Se
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.562-564
    • /
    • 2004
  • The containment leakage rate test performed on the nuclear power plants consists of following phases : pressurizing the containment, stabilizing the atmosphere, conducting a Type A test, conducting a verification test, depressurizing the containment. It takes more than 48 hours from the pressurization to the depressurization and the prediction of the results will help to prepare the next test phase. In this paper, to predict the leakage rate, the prediction methods based on the least square method are evaluated according to the input variables and the measurement period.

  • PDF