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a b s t r a c t

The frequency of reactor coolant leakage is expected to increase over the lifetime of a nuclear power
plant owing to degradation mechanisms, such as flow-acceleration corrosion and stress corrosion
cracking. When loss of coolant accidents (LOCAs) occur, several parameters change rapidly depending on
the size and location of the cracks. In this study, leak flow during LOCAs is predicted using a deep fuzzy
neural network (DFNN) model. The DFNN model is based on fuzzy neural network (FNN) modules and
has a structure where the FNN modules are sequentially connected. Because the DFNN model is based on
the FNN modules, the performance factors are the number of FNN modules and the parameters of the
FNN module. These parameters are determined by a least-squares method combined with a genetic
algorithm; the number of FNN modules is determined automatically by cross checking a fitness function
using the verification dataset output to prevent an overfitting problem. To acquire the data of LOCAs, an
optimized power reactor-1000 was simulated using a modular accident analysis program code. The
predicted results of the DFNN model are found to be superior to those predicted in previous works. The
leak flow prediction results obtained in this study will be useful to check the core integrity in nuclear
power plant during LOCAs. This information is also expected to reduce the workload of the operators.

© 2021 Korean Nuclear Society, Published by Elsevier Korea LLC. All rights reserved. This is an open
access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

According to the operational performance information system
for nuclear power plants (NPPs) [1], 123 cases of primary system
failure occurred from 2002 to 2019. Among them, 22 cases were
events of primary system coolant leakage, including 20 mechanical
defects, one human error, and one pipe integrity threat from
thermal insulation fire [1]. The pipe integrity gradually degrades
over time owing to degradation mechanisms, such as flow-
acceleration corrosion and stress corrosion cracking. Accordingly,
the frequency of leakage is expected to increase over the lifetime of
an NPP.

In the event of an accident in an NPP, proper and prompt action
by the operators is crucial to prevent severe accidents. However, to
take appropriate actions, the operators must diagnose and respond
to several variables early. Furthermore, there are additional con-
siderations to account for when an accident becomes severe. Severe
accidents have been rare in NPPs. If an actual severe accident
by Elsevier Korea LLC. All rights
occurs, the operator may have additional workloads, which can
lead to human errors. In addition, in case of a severe accident, the
variables change rapidly, and the uncertainty of the instrument
increases with time. During severe accidents, these changes
intensify human errors. This study was conducted to reduce the
human error using the artificial intelligence methodology to pro-
vide the operator with prediction information.

To acquire the data required by the artificial intelligence algo-
rithm, in this study, an optimized power reactor-1000 (OPR-1000)
was simulated using a modular accident analysis program (MAAP)
code. The deep fuzzy neural network (DFNN) model was used to
predict the leak flow, and the used datawere the time elapsed since
the start of the event and the leak flow acquired from MAAP code
simulations. Furthermore, because the break size is expected to be
strongly related to the leak flow, it was used as an input variable to
the DFNNmodel. The break size cannot be measured directly, but it
can be estimated accurately [2]. Therefore, the estimated break size
was used. The input values were scaled down to consider the un-
certainty of the sensor in severe circumstances and to improve the
DFNN performance.
reserved. This is an open access article under the CC BY-NC-ND license (http://
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2. DFNN model

Cascaded fuzzy neural networks (FNNs) [2] and simplified
cascaded FNNs [3] are defined as DFNNs. However, the DFNNmodel
used in this study is a more efficient simplified cascaded FNN-type
model. The name of the DFNNmodel originates from a combination
of deep neural networks and FNNs [4]. Briefly, it has a deeply
stacked structure of the FNN module. In the rest of this paper, the
FNN module, which is the core of the structure, is described first;
next, the difference between the DFNN model and the deep neural
network (DNN) is explained, and finally the overall structure of the
DFNN model is described.

2.1. FNN module

FNN combines the fuzzy inference system (FIS) and neural
networks. The FISs are divided into Mamdani-type and Taka-
gieSugeno-type fuzzy models. Because the Mamdani fuzzy model
generally uses the centroid technique for the defuzzification of the
fuzzy output variable, the computation is complicated; however, it
is possible to derive more intuitive values. On the contrary, because
the TakagieSugeno fuzzy model generates the real value directly
and does not require defuzzification, the computation is simple and
fast [5,6]. In this study, the TakagieSugeno fuzzymodel was applied
on representative real non-linear data from NPPs. The fuzzy rule is
expressed as follows:

If x1ðkÞ is fi1ðkÞ; ,,,; xmðkÞ is fimðkÞ;
then byiðkÞ is fiðx1ðkÞ; ,,,; xmðkÞ Þ; (1)

where x1; ,,,; xm are the FNN module input variables, m is the
number of input variables, fi1; ,,,; fim are the fuzzy sets of the
i-th fuzzy rule, and byi is the output of the i-th fuzzy rule. The
function fiðx1ðkÞ; , , ,; xmðkÞÞ in Eq. (1) is expressed as follows:

fiðx1ðkÞ; ,,,; xmðkÞ Þ ¼
Xm
j¼1

pijxjðkÞ þ ri ; (2)

where pij and ri are the weight and bias, respectively.
The FNN serves as a module in the DFNN model. The FNN

module consists of six layers, as shown in Fig. 1. The first layer
consists of the nodes that receive the input values and send them to
the second layer using the membership function. In the second
layer, the membership values are calculated using Eq. (3) and
transferred to the third layer. In addition, the membership function
uses a symmetric Gaussian function, which is expressed as follows:
Fig. 1. First FNN module.
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fij
�
xjðkÞ

� ¼ e�
�
xjðkÞ�cijÞ2

�
2s2ij ; (3)

where cij is the central position of the symmetric Gaussian function,
and sij is the value that controls the width of the symmetric
Gaussian function shape. In the third layer, Eq. (4) is used to
multiply all the membership function values and send them to the
fourth layer:

wiðkÞ ¼
Ym
j¼1

fij
�
xjðkÞ

�
: (4)

In the fourth layer, normalization is performed using Eq. (5), and
the normalized values are sent to the fifth layer:

wiðkÞ ¼
wiðkÞPn

i¼1
wiðkÞ

: (5)

In the fifth layer, each normalized weight is multiplied by the
outputs of the fuzzy rules and sent to the sixth layer. The sixth layer
represents the set of all fuzzy ifethen rules and the output value is
calculated as follows:

byðkÞ ¼ Xn
i¼1

wiðkÞyiðkÞ ¼
Xn
i¼1

wiðkÞfiðx1; x2; ,,,; xmÞ: (6)

Finally, the output values byðkÞ in the first FNN module are
expressed as follows:

byðkÞ ¼ wT ðkÞp; (7)

where

wðkÞ ¼

�
w1ðkÞx1ðkÞ ,,, wnðkÞx1ðkÞ ,,,

w1ðkÞxmðkÞ ,,, wnðkÞxmðkÞ w1ðkÞ ,,, wnðkÞ
�T

;

p ¼ ½p11,,,pn1,,,p1m,,,pnm r1,,,rn�T :
Currently, vector p is a conclusion parameter vector, and the

vectorwðkÞ is composed of the values of the input variables and the
Fig. 2. gth FNN module.
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Fig. 3. General structure of the deep neural network (DNN) model.
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normalized values of the membership functions. For Nt input and
output training data pairs, both p and wðkÞ have ðmþ1Þn
dimensions.

Finally, the output vector of Nt input and output data pairs are
expressed as follows:

byt ¼ Wtp; (8)

where byt ¼ ½byð1Þ ,,, byðNtÞ�T and Wt ¼ ½wð1Þ,,, wðNtÞ�T .
The DFNN model sequentially adds the FNN module to enhance

the prediction performance.

2.2. DFNN model

The DFNNmodel consists of a contiguous batch of FNNmodules.
When the input variable values enter the first FNN module, it is
optimized through a series of calculations. The output values from
the first FNN module are passed together with the original variable
values as input values of the second FNN module, where further
calculations are performed. By doing this up to the last FNN mod-
ule, more precise prediction performance and optimization are
achieved. This process is illustrated in Fig. 2. Figs. 2 and 4 show that
the structure of the DFNN model is similar to that of the DNN
model; the difference between the DFNN and the DNN is that their
performances are determined by different factors. The performance
Fig. 4. Structure of the DFNN model.
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of the DFNN model depends on the fuzzy rule number and hyper-
parameters involved in the membership functions in the FNN
module, whereas the performance of the DNN model depends on
the number of layers and nodes and on the activation functions (see
Fig. 3).

The TakagieSugeno type FIS used in a single FNN module is
expressed as in Eq. (1). However, the FIS for the gth serial module of
the DFNN model used in this paper is expressed as follows:

If x1ðkÞ is f
g
i1ðkÞ; ,,,; xmðkÞ is fg

imðkÞ
AND byðg�1ÞðkÞ is fg

iðmþ1ÞðkÞ;

then bygðkÞ is fg
�
x1ðkÞ; ,,,; xmðkÞ; byðg�1ÞðkÞ

�
;

(9)

where byi is the output of the i-th fuzzy rule, and g is the serial
module number of the DFNN.

In the single FNNmodule, the output values are calculated in the
FIS. The performance of the DFNN model is improved over that of
the FNN model with a single FNN module by passing the output of
the very pre-stage module to the input of the next module, as
shown in Eq. (9). By comparing Figs. 1 and 2, as the pre-stage FNN
module output is added as the input value, the membership
Fig. 5. Optimization procedure for the DFNN model.
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Fig. 6. Fitness function values (Fv) for the verification of data according to the FNN
module number.

Table 1
Input signals used to predict the LOCA break size in Ref. [2].

Break position Input signals

Hot-leg
Cold-leg

Pressure and temperature in the containment
Pressure and water level in the pressurizer

Pressure in a broken side S/G

SGT Temperature in the containment
Water level in the RPV

Pressure and water level in a broken side S/G
Water temperature in an unbroken side S/G

RPV: reactor pressure vessel, S/G: steam generator, SGT: steam generator tube.

J.H. Park, Y.J. An, K.H. Yoo et al. Nuclear Engineering and Technology 53 (2021) 2547e2555
function is also added and calculated. Fig. 4 illustrates the DFNN
model.
2.3. Training the DFNN model

The DFNN model is established by training the model through
development data [7] by applying a genetic algorithm (GA) and a
least-squares method. The GA is used to improve the performance
of the DFNNmodel by optimizing critical parameters, e.g., cij and sij,
which determine the shape of all the membership functions. These
parameters are encoded and constructed as chromosomes. In this
study, the GA parameters were set as follows: population size of 20,
mutation probability of 20%, and crossover probability of 100%. The
DFNN model was optimized sequentially until the last module in
the FNN modules, and the optimized values were updated contin-
uously. The GA minimizes the maximum error and root mean
square (RMS) error. For this purpose, the fitness function shown in
Eq. (10) was used for measuring the optimization degree. In Eq.
(10), relative errors relative to the maximum leak flow at the cor-
responding break size were used because the usual relative error
may not be calculated when the leak flow value is zero or close to
zero.

Ft ¼ expð � yt1Et1 � yt2Et2Þ; (10)

where

Et1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
Nt

XNt

k¼1

�
yðkÞ � byðkÞ
ymaxðkÞ

	2
vuut ;

Et2 ¼ max
k






�
yðkÞ � byðkÞ �
ymaxðkÞ





; k ¼ 1;/;Nt ;

y1 and y2 are the weighting values for the RMS and maximum er-
rors, respectively, and Nt is the number of training data.

After the parameters of the membership functions are deter-
mined through the GA, the conclusion parameters are combined
and expressed as in Eq. (8). Conclusion parameter p is optimized by
the least-squares method, which minimizes an objective function
defined by the squared errors between the target values and the
predicted values [8]:
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S ¼
XNt

k¼1

�
yðkÞ � byðkÞ �2 ¼

XNt

k¼1

�
y
�
k
��wTðkÞq

�2 ¼ 1
2

�
yt � byt

	2

;

(11)

where yt ¼ ½yð1Þ / yðNtÞ�T . The objective function is minimized
by the following equation:

yt ¼ Wtp: (12)

The conclusion parameter p in Eq. (12) is calculated using the
pseudo-inverse of the matrix Wt:

p ¼
�
WT

t Wt

��1
WT

t yt ; (13)

where thematrixWt consists of the values of input variable and the
normalized values of membership functions, and yt consists of
target output values.

The DFNN model increases the complexity of the model by
passing the predicted value of the very pre-stage FNNmodule as an
input value to the next module and by increasing the number of
FNN modules, which may cause the overfitting problem. An algo-
rithm for determining the optimal number of modules to prevent
the overfitting problem is applied in the DFNN model. The number
of optimal FNN modules is determined and controlled using the
values of another fitness function using the verification data:

Fv ¼ expð � yv1Ev1 � yv2Ev2Þ; (14)

where

Ev1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
Nv

XNtþNv

k¼Ntþ1

�
yðkÞ � byðkÞ
ymaxðkÞ

	2
vuut ;

Ev2 ¼ max
k






�
yðkÞ � byðkÞ �
ymaxðkÞ





; k ¼ Nt þ 1;/;Nt þ Nv;

yv1 and yv2 are the weighting values for the RMS and maximum
errors, and Nv is the number of verification data. The overall opti-
mization process is depicted in Fig. 5.

The DFNN model is expected to be overfitted when Eq. (15) is
satisfied. That is, the fitness function value, Fv, increases rather than
decreases when the FNNmodule is added. If the fitness value of the
current FNNmodule is greater than or equal to that of the very pre-
stage FNN module, the output of the current FNN module is more
accurate than that of the very pre-stage FNNmodule; then, the FNN
module is added. If the fitness value of the current FNN module is
lower than that of the very pre-stage FNN module, the FNN mod-
ules are added until that point is determined to be an optimal
number.

mailto:Image of Fig. 6|eps


Table 2
Break size prediction performance obtained in Ref. [2].

Break
position

No. of
FNN modules

Development data Test data

RMS Error (%) Maximum Error (%) RMS Error (%) Maximum Error (%)

Hot-leg 8 0.38 1.83 0.51 0.62
Cold-leg 8 0.22 0.78 0.27 0.57

SGT 5 0.77 3.29 0.69 1.58

Fig. 7. Data structure to be applied to the DFNN model.
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g>3 and ½FvðgÞ< ¼1:1�Fvðg�1Þ and FvðgÞ<Fvðg�3 : g�1Þ �;
(15)

where g is the FNN module number.
Fig. 6 shows that when Eq. (15) is applied to the cold-leg loss of

coolant accident (LOCA) for the DFNN model with 13 fuzzy rules,
the optimal number of FNN modules is 17 and overfitting occurs at
the 18th module.
2.4. Data acquisition for application to the DFNN model

A MAAP code was used to simulate the LOCAs of the OPR-1000
reactor. The DFNN model predicts the output leak flow from the
inputs of the elapsed time and LOCA break size. It uses the pre-
dicted LOCA break size by utilizing a type of DFNN developed in a
previous study [2]. The LOCA break size is estimated by five input
values depending on the break position. Tables 1 and 2 list the
specific input values and the prediction performance, respectively;
Table 3
Prediction performance of a single FNN module for hot-leg LOCAs.

(a) Small break

No. of fuzzy rules Development data

RMS Error (%) Maximum Er

5 9.95 59.60
10 9.12 46.61
20 8.17 45.89
30 7.32 55.94

(b) Large break

No. of fuzzy rules Development data

RMS Error (%) Maximum Er

5 1.19 11.68
10 1.68 11.84
20 1.10 13.94
30 0.97 11.11
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the overall RMS error is within 0.7% [2]. Because the predicted
break sizes are almost the same as the target size values, they were
applied to the DFNN model. The input variables of the DFNNmodel
are the elapsed time and break size for the leak flowestimates. Also,
the break position information provided from an algorithm of a
previous study [9] was used. Because the sensors may degrade
during a severe accident, additional sensor signals were not used.
The LOCA break sizes were predicted using sensor signals detected
during initial transients (not exposed to severe conditions).

When collecting data, some safety systems (high- and low-
pressure safety injection systems) were assumed to be inoperable
to simulate a severe post-LOCA circumstance but the passive safety
system of safety injection tank (SIT) is available. If the primary pipe
breaks, coolant leakage occurs due to the pressure difference be-
tween the RCS and the containment. At the beginning of the break,
the pressure difference is very large, so the leak flow increases
rapidly. It is expected that the injection flow rate into the RCS from
SIT increases due to the pressure drop in the RCS accompanying the
occurrence of leak flow but the SIT will be empty soon. Simulation
data were collected and classified into three accidents: hot-leg
LOCA, cold-leg LOCA, and steam generator tube rupture (SGTR).
The hot-leg and cold-leg LOCA data were collected from accident
simulations with 200 LOCA break sizes at an equal interval from
0.005 to 1 times sectional area inside each pipe. The diameters of
the hot-leg and cold-leg were 1.0668 and 0.762m, respectively. The
SGTR data were collected by simulating 1 to 200 SGTRs of tubes
with a diameter of 0.0169m. The datawere classified into small and
large groups according to their break sizes. The hot-leg and cold-leg
LOCAswere divided into 30 simulations for the small group and 170
simulations for the large group, and the SGTR simulations were
divided into 100 simulations for the small group and 100 simula-
tions for the large group. The acquired data were divided into
training, verification, and test data, as shown in Fig. 7. That is, 100
test data were drawn at fixed intervals from all the data, and
training data were selected at the fixed intervals except test data
size group

Test data

ror (%) RMS Error (%) Maximum Error (%)

10.77 58.18
8.31 29.79
8.31 26.08
8.68 41.06

size group

Test data

ror (%) RMS Error (%) Maximum Error (%)

0.95 5.16
1.61 7.17
0.94 5.39
0.74 5.34

mailto:Image of Fig. 7|tif


Table 4
Prediction performance of a single FNN module for cold-leg LOCAs.

(a) Small break size group

No. of fuzzy rules Development data Test data

RMS Error (%) Maximum Error (%) RMS Error (%) Maximum Error (%)

5 7.57 41.08 8.34 25.85
10 5.37 52.59 7.89 46.69
20 6.16 75.65 4.71 25.46
30 5.74 73.63 6.75 34.61

(b) Large break size group

No. of fuzzy rules Development data Test data

RMS Error (%) Maximum Error (%) RMS Error (%) Maximum Error (%)

5 1.17 5.88 1.17 3.87
10 0.86 6.36 0.81 3.49
20 0.67 5.16 0.68 3.13
30 0.57 5.99 0.62 2.94

Table 5
Prediction performance of a single FNN module for SGTRs.

(a) Small break size group

No. of fuzzy rules Development data Test data

RMS Error (%) Maximum Error (%) RMS Error (%) Maximum Error (%)

5 6.08 46.84 6.25 15.27
10 5.67 48.87 5.35 20.09
20 4.50 38.65 6.60 41.89
30 3.98 42.10 4.51 14.12

(b) Large break size group

No. of fuzzy rules Development data Test data

RMS Error (%) Maximum Error (%) RMS Error (%) Maximum Error (%)

5 3.52 57.84 1.64 6.66
10 3.41 55.77 1.76 9.38
20 2.98 60.75 1.48 7.95
30 3.03 58.39 1.40 5.55

Table 6
Prediction performance of DFNN model for hot-leg LOCAs.

(a) Small break size group

No. of fuzzy rules No. of FNN modules Development data Test data

RMS Error (%) Maximum Error (%) RMS Error (%) Maximum Error (%)

2 23 0.1885 3.7741 0.0448 0.1388
3 27 0.1695 3.7605 0.0532 0.1487
5 7 0.3172 3.9265 0.0412 0.1654
7 29 0.1469 3.0101 0.0384 0.1788
9 14 0.1675 3.7516 0.0308 0.1544
11 43 0.1432 3.4019 0.0586 0.5712
13 28 0.1054 3.0909 0.0397 0.2134
15 32 0.1486 3.0852 0.0475 0.4279

(b) Large break size group

No. of fuzzy rules No. of FNN modules Development data Test data

RMS Error (%) Maximum Error (%) RMS Error (%) Maximum Error (%)

2 34 0.0115 0.2483 0.0069 0.0373
3 37 0.0115 0.2457 0.0184 0.1362
5 19 0.0086 0.2154 0.0101 0.0690
7 26 0.0100 0.3247 0.0121 0.0765
9 15 0.0110 0.2612 0.0152 0.1444
11 15 0.0109 0.2654 0.0134 0.1037
13 10 0.0128 0.2831 0.0161 0.1467
15 25 0.0086 0.2328 0.0059 0.0454
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Table 7
Prediction performance of DFNN model for cold-leg LOCA.

(a) Small break size group

No. of fuzzy rules No. of FNN modules Development data Test data

RMS Error (%) Maximum Error (%) RMS Error (%) Maximum Error (%)

2 10 0.4756 4.7012 0.3428 1.6504
3 26 0.2319 4.1830 0.2088 1.7419
5 14 0.3153 4.5729 0.2030 1.7784
7 23 0.2493 4.4076 0.9088 8.8868
9 11 0.2537 3.2509 0.2173 1.7162
11 8 0.3305 6.5458 0.2149 1.7361
13 17 0.2203 4.2426 0.1815 1.6806
15 5 0.4269 13.4263 0.2362 1.7003

(b) Large break size group

No. of fuzzy rules No. of FNN modules Development data Test data

RMS Error (%) Maximum Error (%) RMS Error (%) Maximum Error (%)

2 27 0.0337 0.5514 0.0671 0.5024
3 27 0.0277 0.4927 0.0464 0.2628
5 26 0.0270 0.4709 0.0512 0.3334
7 16 0.0330 0.5449 0.0752 0.4899
9 23 0.0248 0.4130 0.0623 0.4240
11 18 0.0265 0.4951 0.0440 0.2458
13 17 0.0271 0.5547 0.0593 0.4659
15 7 0.0332 0.5394 0.0497 0.2634

Table 8
Prediction performance of DFNN model for SGTRs.

(a) Small break size group

No. of fuzzy rules No. of FNN modules Development data Test data

RMS Error (%) Maximum Error (%) RMS Error (%) Maximum Error (%)

2 19 1.4790 58.6504 0.6218 4.3034
3 11 1.6675 59.4511 1.0749 9.8693
5 15 1.3324 58.7966 0.5270 2.1867
7 27 1.1658 41.6541 0.3631 1.6037
9 19 1.3611 48.1994 0.8915 6.7938
11 5 1.9629 59.1849 0.5903 3.7468
13 14 1.4282 41.1940 0.3816 1.6699
15 6 1.7054 59.3115 0.6249 3.9665

(b) Large break size group

No. of fuzzy rules No. of FNN modules Development data Test data

RMS Error (%) Maximum Error (%) RMS Error (%) Maximum Error (%)

2 4 0.7753 40.7811 0.2534 1.6908
3 4 0.7233 40.5468 0.3912 2.4340
5 4 0.7445 37.4098 0.3568 2.7861
7 4 0.6758 38.2729 0.3171 2.0905
9 4 0.7544 36.3430 0.2925 2.1454
11 4 0.6944 39.6445 0.2761 1.9062
13 4 0.7052 35.0808 0.2181 1.2509
15 4 0.5439 29.1490 0.1924 1.3104
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and the remainder was verification data (5% of all data).
3. Prediction results for leak flow using DFNN model

In this study, the leak flowwas predicted using the DFNNmodel.
The DFNN with a single FNN module is the same as the FNN model
developed in a previous study [4]. The performance of the FNN
model was compared to that of the DFNNmodel. The break sizewas
used as the input of the FNN and DFNN models.
2553
3.1. Leak flow prediction results using the DFNN model and
performance comparison with a single FNN module

Tables 3e5 show the leak flow prediction performances of the
FNNmodel (that is, DFNNwith a single FNNmodule) for the hot-leg
and cold-leg LOCAs, and the SGTR data, including the RMS and
maximum errors according to the number of fuzzy rules. The
simulation data of the small break size group fluctuate significantly,
so, based on the RMS error of the test data, the prediction



Fig. 8. Prediction result of the DFNN model for a hot-leg LOCA with a specific break
size (test data of fixed interval): (a) A specific size in the small break size group; (b) A
specific size in the large break size group.

Fig. 9. Prediction result of the DFNN model for a cold-leg LOCA with a specific break
size (test data of fixed interval): (a) A specific size in the small break size group; (b) A
specific size in the large break size group.
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performance is low. However, the large break size groups with
small changes show the prediction performance within 2%. It is
noticed that the proposed DFNN model predicts the leak flowrate
from 600 s after reactor trip due to the LOCA accidents because the
DFNN model induces much error due to initial significant
transients.

The performance of the DFNNwas improved by adding multiple
FNN modules in this study. The fuzzy rule number is a hyper-
parameter that determines the performance of a DFNN model.
Tables 6e8 summarize the prediction performance according to the
fuzzy rule number. To determine the optimal fuzzy rule number,
the model complexity and RMS error of the test data were chosen
as the optimal value selection condition.

The performance of the DFNNmodel is significantly higher than
when using a single FNN module, particularly in the small break
size group. It is clearly shown from comparison of Tables 3e5 and
Tables 6e8. Based on model complexity and RMS error, the optimal
rule number was chosen to be 13. As the fuzzy rule number in-
creases, the probability of overfitting also increases; thus, the
choice of a suitable rule number is important. In all the break cases,
the prediction performance is within 0.4% in an aspect of RMS error
for the test data. The complexity of the DFNNmodel was defined as
the number of all the conclusion parameters contained in all the
FNN modules:
2554
model complexity ¼ ðmþ 1Þn þ ðG� 1Þðmþ 1Þn; (16)

where G is the number of FNN modules, m is the number of input
variables to the first FNN module, and n is the number of fuzzy
rules. Figs. 8e10 show the results of the DFNN with 13 fuzzy rules
for a specific break size in each break position. It is natural that the
leak flowrate of large breaks is much larger than that of small
breaks in an initial stage (before 600 s have passed). However, as
shown in Fig. 9, the leak flowrate of large breaks can be smaller
than that of small breaks from 600 s after the reactor trip due to the
accidents. When SGTR occurs, RCS coolant from the primary side
leaks to the secondary side. With this leakage, the pressure and
water level on the primary side decrease, and as time passes, the
pressure on the primary side may become lower than the pressure
on the secondary side. Due to this pressure reversal, water from the
secondary side may flow back to the primary side (refer to Fig. 10).
4. Conclusions

When LOCAs occur in NPPs, many abnormal signals are detec-
ted. Currently, it is important for operators to understand the
abnormal signals and take proper actions. However, during LOCAs,
these signals change rapidly, increasing the workload and the

mailto:Image of Fig. 8|eps
mailto:Image of Fig. 9|eps


Fig. 10. Prediction result of the DFNN model for an SGTR with a specific break size (test
data of fixed interval): (a) A specific size in the small break size group; (b) A specific
size in the large break size group.
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probability of human errors. In this study, we attempted to reduce
the human errors of inappropriate actions by providing a leak flow
prediction signal in case of LOCAs. The leak flowwas predicted with
a DFNN model using the LOCA break size predicted in the previous
study [2] as input data. In addition, the least-squares method and a
GA were applied to optimize the DFNN model, and also another
fitness function in the GAwas introduced to determine the optimal
number of the FNN modules. The fuzzy rule number of the devel-
oped DFNN model varied depending on the break position, and,
considering the RMS error andmodel complexity, the optimal fuzzy
rule number was determined to be 13. The RMS errors of the
leakage amount in the small and large hot-leg break size groups
2555
predicted from the DFNN model with 13 fuzzy rules were found to
be 0.0397% and 0.0161%, respectively, those of the small and large
cold-leg break size groups were 0.1815% and 0.0593%, respectively,
and those of the small and large break groups for the SGTRs were
found to be 0.3816% and 0.2181%, respectively. These results show
that the performance is improved to 0.3816%, which is the largest
RMS error of the DFNN model, compared with 8.31%, which is the
largest RMS error of a single FNN module (FNN model) for the
entire break positions. The DFNN model showed a significantly
higher performance than a single FNNmodule (FNNmodel), within
a 0.4% RMS error. The DFNN model is expected to help operators to
take proper safety actions by providing them with important in-
formation of leak flows in the LOCAs of NPPs.
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