• Title/Summary/Keyword: power distribution line

Search Result 812, Processing Time 0.03 seconds

Embedded System Design with COS LoRa technology (COS LoRa 기반의 임베디드 시스템 설계)

  • Hong, Seonhack;Cho, Kyungsoon;Yoon, Jinseob
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.14 no.3
    • /
    • pp.29-38
    • /
    • 2018
  • It is the approach of embedded system design that analyzes COS(Cut Out Switch) failure in the power distribution and an instantaneous breakdown of power distribution supply could cause the weakness of industrial competence and therefore we need to feed the stable power distribution with developing the technology of open-source embedded system. In this paper, we apply the LoRa technology which is the Internet of Things(IoT) protocol for low data rate, low power, low cost and long range sensor applications. We designed the hardware and software architecture setup and experimented the embedded system with network architecture and COS monitoring system including accelerometer for detecting the failure of distribution line and sensing the failure of its fuse holder by recognizing the variation and collision and afterwards sending the information to a gateway. With experimenting we designed the embedded platform for sensing the variation and collision according to the COS failure, monitoring its fuse holder status and transferring the information of states with LoRa technology.

The Coordinate Control Method of LTC Transformer and Capacitor Banks at Distribution Substation

  • Choi, Joon-Ho;Ahn, Seon-Ju;Nam, Hae-Kon;Kim, Jae-Chul;Moon, Seung-Il;Jung, Won-Wook;Song, Il-Keun
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.3
    • /
    • pp.320-329
    • /
    • 2012
  • The Load Tap Changing (LTC) transformer and Shunt Capacitor (SC) bank are major devices for voltage and reactive power control in a distribution substation. Thus, the coordination operation of a LTC transformer and a SC bank is required to achieve better voltage and reactive power compensation at a distribution substation in the same time. This paper proposes coordinate control method of LTC transformer and SC bank to achieve better voltage and reactive power compensation and operation times of these two devices in the same time. The mathematical formulations of the proposed coordinate control method are introduced. Sample case studies are shown to verify the effectiveness of the proposed coordinate control method.

A Study on the Countermeasure of Electrical Equipment Faults Caused by Magpie in Distribution Lines (배전선로의 까치사고 방지대책에 관한 연구)

  • Kim, T.S.;Ahn, S.M.;Kim, C.H.;Lee, J.C.
    • Proceedings of the KIEE Conference
    • /
    • 2000.07a
    • /
    • pp.452-454
    • /
    • 2000
  • While magpies are making their nest and are laying eggs from February to May time frame, the electrical power incidents by magpies are as high as 30% of all. This research will examine the establishment of frequency of magpies by utilizing Alarm Calls with their own voice characteristic and also try avoiding access to distribution equipments in order to prevent from constructing their nests on the distribution lines. This research results contribute to improve the reliability in the power distribution line.

  • PDF

Field Demonstration of the Distribution STATCON-Engineering (배전용 STATCON 설치사례-엔지니어링)

  • Han, Y.S.;Yoo, I.D.;Choi, J.Y.;Hong, S.W.;Lee, H.S.;Jeon, Y.S.
    • Proceedings of the KIEE Conference
    • /
    • 1999.07f
    • /
    • pp.2575-2577
    • /
    • 1999
  • This paper describes the engineering process for analyzing the simulation result and deciding the site in which Distribution STATCON operates more effectively. For this purpose the modeling method of industrial loads, equipments and STATCON was represented. Models of motor, furnace and so on are presented for the modeling of industrial loads. The distribution system models include the parameters of the distribution line and transformer. The models of PESS(Power Electronics Subsystem), controllers and maginetics are consist of STATCON model.

  • PDF

Substation Bus Voltage Angle Calculation Method Using Voltage Angle Difference Measured at the Tie Switch in the Distribution Line (배전선로 상시연계점 측정 전압 위상차를 이용한 변전소 모선 위상각 추정 방법)

  • Son, Ju-Hwan;Lim, Seong-Il
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.1
    • /
    • pp.9-15
    • /
    • 2016
  • Distribution networks are operated in radial fashion during the normal state. Loop configuration is also required temporally in case of live load transfer among the adjacent feeders. Voltage angles of each substation buses are very important data in order to calculate power flow of the loop structured distribution feeders. This paper proposes substation bus voltage angle calculation method using voltage angle difference measured at the normally open tie switches. Simulation case studies using Matlab simulink have been performed to establish feasibility of proposed method.

A study on capacitive transformer (용량성배전변압기에 관한 연구)

  • Sung Won Rhee
    • 전기의세계
    • /
    • v.18 no.2
    • /
    • pp.7-14
    • /
    • 1969
  • From the first customer located right at the substation to the last customer at the end of the line, voltage must be held within close limits, so the voltage regulation is more important than the thermal limit. On a typical distribution system during the peak load period, the voltage drop may be serious enough to cause unsatisfactory operation of home appliances in the residential area, and present many problems to manufacturing industries, where the voltage must be maintained within close limits to insure smooth operation. Among all the factors contributing to voltage drop in the distribution system, the voltage drop in the distribution transformer may account for 30% of this figure. If we can eliminate this factor, the power companies can provide better quality electricity to more customers with the existing distribution facilities, thus saving on initial investment costs. Taking all these problems into consideration, the author undertook the design of a capacitive transformer which would give zero voltage drop at rated load and at 80% lagging power factor while incorporating overload features to withstand 400% overload for at least 100 seconds. The following are the results obtained through design, manufacture and test of an initial experimental transformer built with these specific purposes.

  • PDF

Study on The Voltage Variation in Power Distribution Systems Including cogeneration Facilities. (열병합 발전설비의 배전계통 연계시 전압변동에 관한 연구)

  • Choi, Joon-Ho;Kim, Du-Bong;Kim, Jae-Chul;Hwang, Chi-Woo
    • Proceedings of the KIEE Conference
    • /
    • 1997.07c
    • /
    • pp.958-961
    • /
    • 1997
  • This Paper deals with voltage variation and voltage regulation method in power distribution systems including cogeneration facilities. In order to deliver suitable voltages to many customers at the distribution substations. In this paper, an on-line real time modified voltage regulation method is proposed. The result from a case study show that the proposed method can be practical tool for the voltage regulation in distribution systems including cogeneration facilities.

  • PDF

A Study on the Field Test for Surge Analysis in Underground Distribution Systems (지중배전선로 서지해석의 실증적 연구)

  • Yun, Chang-Sub;Lee, Jong-Beom;Lee, Jae-Bong
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.701-702
    • /
    • 2007
  • This paper describes the modelling techniques for surge analysis in underground distribution systems with power cables. To evaluate the Analysis model, the change of line model and permittivity is considered. power cable parameters calculated by LCC of EMTP are considered to evaluate surge model in underground distribution systems. It is evaluated that impulse model according to the shape of impulse source model. However it is confirmed through comparison with measurement value in field test of underground distribution systems.

  • PDF

Applied Technology of FRP Single Pole for Power Distribution Line (배전용 지지물의 FRP 적용 기술)

  • 박기호;조한구;한동희
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.79-81
    • /
    • 2000
  • Outdoor insulation of overhead distribution lines with wood, concrete and steel pole has been safety under various environmental conditions including contamination, moisture condensation, rain and lightning overvoltages. In this paper introduce to FRP technology of the power distribution single pole. FRP pole has been used very much as high strength material for insulators because of its high strength and good insulation properties. In addition, FRP pole was made by filament winding method. In a filament winding process, a band of continuous resin-impregnated rovings or monofilaments is wrapped around a rotating mandrel and cured to produce axisymmetric hollow parts.

  • PDF

Line Current Characteristics of Multilevel H-Bridge Inverters: Part II - Harmonic Reduction with Multiple Transformer Windings (다단 H-브릿지 인버터의 입력전류특성(II) - 다중 변압기 결선에 의한 고조파 저감)

  • Jeong, Seung-Gi
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.13 no.3
    • /
    • pp.237-245
    • /
    • 2008
  • Recently, multilevel H-bridge inverters have become popular in medium to high power ac drive applications. One of significant advantages of them is low harmonic contents in their input line currents thanks to the transformer with multiple phase-shifted secondary windings. This paper attempts to provide basic guidelines for the design of the phase shifting transformer windings and theoretical analysis of input line current harmonics of H-bridge inverters. The part II is devoted to the analysis of the harmonic characteristics of the input line current, providing mathematical background for the equidistant phase-shifting angle distribution policy for harmonic elimination.