• Title/Summary/Keyword: power control system

Search Result 10,130, Processing Time 0.029 seconds

A Study on Photovoltaic/Wind/Diesel Hybrid Power System

  • Jeong, Byung-Hwan;Cho, Jun-Seok;Gho, Jae-Seok;Choe, Gyu-Ha;Kim, Eung-Sang;Lee, Chang-Sung
    • Journal of Power Electronics
    • /
    • v.3 no.1
    • /
    • pp.40-48
    • /
    • 2003
  • In this paper, a hybrid power system with photovoltaic/wind/diesel generators is proposed to solve the defect of stand-alone type power system in a remote area. A hybrid power system has a power-balanced controller to equilibrate generation power with a given load demand and which is composed of common DC power system. To execute a power-balanced control, a hybrid power system is assumed that all of power generators have the characteristics of an equivalent current-source and load sharing control technique must be needed at the same time. So this paper discusses the structure of power-balance control for hybrid power system. And through the results of simulation, the proposed scheme was verified.

A Study on Programmable Logic-based Smart Peak Power Control System (프로그램 로직 기반의 스마트 최대 전력 관리 시스템에 관한 연구)

  • Lee, Woo-Cheol;Kwon, Sung-Hyun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.2
    • /
    • pp.92-99
    • /
    • 2014
  • The paper is related to smart maximum power system based on program logic. Especially, this system compares the total demand power with the target power by using the signal from the digital kilo watt meter. Based on the power information by the maximum power control equipment the consumed future power is anticipated. In addition, through consumed future power the controllable target power is set, and it applies on the maximum power control equipment. User or manager would control the load efficiently through the simple programming which could control load based on the control sequence and relay. To begin with the conventional maximum power control algorithm is surveyed, and the smart maximum power control system based on program logic is used, and the new algorithm from full load to proportion shut down is proposed by using PLC program. the validity of the proposed control scheme is investigated by both simulation results.

Power Line Communication-based Heated Glass Temperature Control System (전력선통신을 이용한 선박 및 건축용 발열유리 온도제어 시스템)

  • Lee, Su-Hyeong;Kim, In-Dong
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.20 no.2
    • /
    • pp.105-114
    • /
    • 2015
  • Heated glasses are widely used to prevent surface condensation and freezing in ship and building windows. This study proposes a heated glass temperature control system composed of power and control circuits to control the temperature of heated glasses. The proposed temperature control system adopts a digital controller instead of a conventional analog controller. Thus, the proposed system has better characteristics, such as precise setup and control of glass temperature, setup and control of output power, and control mode change between ON/OFF and phase controls. The system can also implement multi-functional control algorithms. The control characteristics are not dependent upon external disturbances, such as ambient temperature and electrical noises. Furthermore, the proposed temperature control system utilizes the power line communication (PLC) method to control the number of heated glasses without any extra communication lines. The system proposes a new communication protocol with strong immunity to electrical switching noises. A new sensorless algorithm is used to detect the temperature of the heated glass. This study presents the design guidelines in detail and its effectiveness are confirmed by implementing a 4-kw prototype temperature control system.

Application of Lyapunov Theory and Fuzzy Logic to Control Shunt FACTS Devices for Enhancing Transient Stability in Multimachine System

  • Kumkratug, P.
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.5
    • /
    • pp.672-680
    • /
    • 2012
  • This paper proposes the control strategy of the shunt Flexible AC Transmission System (FACTS) devices to improve transient stability in multimachine power system. The multimachine power system has high nonlinear response after severe disturbance. The concept of Lyapunov energy function is applied to derive nonlinear control strategy and it was found that the time derivative of line voltage is not only can apply to control the shunt FACTS devices in multimachine system but also is locally measurable signal. The fuzzy logic control is also applied to overcome the uncertainty of various disturbances in multimachine power system. This paper presents the method of investigating the effect of the shunt FACTS devices on transient stability improvement. The proposed control strategy and the method of simulation are tested on the new England power system. It was found that the shunt FACTS devices based on the proposed nonlinear control strategy can improve transient stability of multimachine power system.

Control Algorithm of Hybrid System for Feeder Flow Mode Operation in Microgrid (마이크로그리드에서 하이브리드 시스템의 Feeder Flow Mode 운영을 위한 제어 알고리즘)

  • Moon, Dae-Seong;Seo, Jae-Jin;Kim, Yun-Seong;Won, Dong-Jun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.1
    • /
    • pp.1-7
    • /
    • 2011
  • Active power control scheme for distributed generation in microgrid consists of feeder flow control and unit power control. Feeder flow control is more useful than the unit power control for demand-side management, because microgrid can be treated as a dispatchable load at the point of common coupling(PCC). This paper presents detailed descriptions of the feeder flow control scheme for the hybrid system in microgrid. It is divided into three parts, namely, the setting of feeder flow reference range for stable hybrid system operation, feeder flow control algorithm depending on load change in microgrid and hysteresis control. Simulation results using the PSCAD/EMTDC are presented to validate the inverter control method for a feeder flow control mode. As a result, the feeder flow control algorithm for the hybrid system in microgrid is efficient for supplying continuously active power to customers without interruption.

Research on Improvement of Power Control System of Cold & Hot Water Purifier (냉온정수기의 전원 제어 시스템 개선에 관한 연구)

  • Lee, Ki-Yeon;Choi, Chung-Seog;Kim, Dong-Ook;Kim, Hyang-Kon;Kim, Dong-Woo
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.56 no.1
    • /
    • pp.45-50
    • /
    • 2007
  • In this paper, this paper discusses how to improve the power control system of cold and hot water purifiers, in particular, system protecting device against abnormal voltage. The existing power supply control system came with a protecting device composed of varistor device only for impulse-type surges. Even though the existing system senses surge other than impulse-type, the system can not be protected. Accordingly, a new type of power control system was designed to protect the system from surge and ultimately prevent electricity accidents. The power control system suggested in this paper will be designed to protect the system by sensing input voltage and discontinuing power supply by means of SSR if voltage exceeding set value is sensed. To test the designed system, surge was imposed on the existing system and processes of system failure were experimented before safety of the designed power control system was simulated via P-spice program developed by Orcad in order to examine safety and reliability of the system.

Demonstration to Operate and Control Frequency Regulation of Power System by 4MW Energy Storage System (4MW 에너지저장장치의 전력계통 주파수 조정 운전제어를 위한 실증)

  • Lim, Geon-Pyo;Han, Hyun-Gyu;Chang, Byung-Hoon;Yang, Seung-Kwon;Yoon, Yong-Beum
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.63 no.3
    • /
    • pp.169-177
    • /
    • 2014
  • Operation and control system has been installed and tested to use energy storage system(ESS) for frequency regulation at 4MW class of ESS demonstration facility installed at Jeju island, Korea in 2013. Simulation tests were performed by programing language C# for power system of Jeju island to develop control algorithm. Site simulation tests were performed in control system itself without connecting power system and energy storage system. Control algorithm was coded, modified and tested to load to controller and communication system and human-machine interface were developed and tested in the process of simulation tests. After similar results to that of simulation tests by programing language were obtained, power system and energy storage system demonstration facility were connected to control system by communication system. Energy storage system for frequency regulation was tested for actual frequency and simulation frequency. The site tests showed the similar results to that of simulation tests and the control systems is possible to be operated for frequency regulation. Faster response of energy storage system for frequency regulation, less costs and less capacity of energy storage systems which cover for frequency regulation of power plants. It is expected that more studies for time-reduction and time-delay elements can make less capacity of energy storage system cover more role of frequency regulation of power plants.

A Control System for Solar Thermal Power Plant (태양열발전 제어시스템)

  • Park, Young-Chil
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.693-697
    • /
    • 2007
  • A control system for solar thermal power plant is the control system to coordinate the whole system's operation, including management of distributed control systems, process control for optimal operation of total system, monitoring system operating conditions and doing administrative functions. This work, as a progress report, presents the results obtained so far in building a control system for the 1MW solar thermal power plant. To make the control system, we first defined the control system's hierarchy and classified the role of each layer. Then, as the first stage of making control system, we designed and developed the sun tracking control system for heliostat.

  • PDF

Coordination of UPFC and Reactive Power Sources for Steady-state Voltage Control (정상상태 전압제어를 위한 UPFC와 조상설비의 협조)

  • Park, Ji-Ho;Lee, Sang-Duk;Jyung, Tae-Young;Jeong, Ki-Seok;Baek, Young-Sik;Seo, Gyu-Seok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.5
    • /
    • pp.921-928
    • /
    • 2011
  • This paper presents a new method of local voltage control to achieve coordinative control among UPFC(Unified Power Flow Controller) and conventional reactive compensation equipments, such as switched-shunt and ULTC(Under-Load Tap Changing) transformer. Reactive power control has various difficult aspects to control because of difficulty of system analysis. Recently, the progress of power electronics technologies has lead to commercial availability of several FACTS(Flexible AC Transmission System) devices. The UPFC(Unified Power Flow Controller) simultaneously allows the independent control of active and reactive power flows as well as control of the voltage profile. When conventional reactive power sources and UPFC are used to control system voltage, the UPFC reacts to the voltage deviation faster than the conventional reactive power sources. Keeping reactive power reserve in an UPFC during steady-state operation is always needed to provide reactive power requirements during emergencies. Therefore, coordination control among UPFC and conventional reactive power sources is needed. This paper describe the method to keep or control the voltage of power system of local area and to manege reactive power reserve using PSS/E with Python. The result of simulation shows that the proposed method can control the local bus voltage within the given voltage limit and manege reactive power reserve.

A Multiagent-Based Hybrid Power Control and Management of Distributed Power Sources

  • Yoon, Gi-Gab;Hong, Won-Pyo;Lee, Ki-Hong
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.8
    • /
    • pp.70-81
    • /
    • 2011
  • In this paper, a multi-agent control system for DC-coupled photovoltaic (PV), fuel cell (FC), ultracapacitor(UC) and battery hybrid power system is studied for commercial buildings & apartment buildings microgrid. In this proposed system, the PV system provides electric energy to the electrolyzer to produce hydrogen for future use and transfer to the load side, if possible. Whenever the PV system cannot completely meet load demands, the FC system provides power to meet the remaining load. A multi-agent system based-power management and control algorithm is proposed for the hybrid power system by taking into account the characteristics of each power source. The main works of this paper are hybridization of alternate energy sources with FC systems using long and short storage strategies to build the multi-agent control system with pragmatic design, and a dynamic model proposed for a PV/FC/UC/battery bank hybrid power generation system. A dynamic simulation model for the hybrid power system has been developed using Matlab/Simulink, SimPowerSystems and Stateflow. Simulation results are also presented to demonstrate the effectiveness of the proposed multi-agent control and management system for building microgrid.