• Title/Summary/Keyword: powder composite

Search Result 1,283, Processing Time 0.033 seconds

Surface Modification and Bioactivity Improvement of 3Y-TZP Substrate by Spray Coating of Hydroxyapatite/Fosterite Composite Powder (하이드록시아파타이트/포스터라이트 복합분말의 분사코팅에 의한 3Y-TZP 기판의 표면개질과 생체활성 증진)

  • Yu Hyeon Yun;Jong Kook Lee
    • Korean Journal of Materials Research
    • /
    • v.33 no.8
    • /
    • pp.337-343
    • /
    • 2023
  • 3Y-TZP (3 mol% yttria-stabilized tetragonal zirconia polycrystals) ceramics have excellent mechanical properties including high fracture toughness, good abrasion resistance as well as chemical and biological stability. As a result, they are widely used in mechanical and medical components such as bearings, grinding balls, and hip implants. In addition, they provide excellent light transmittance, biocompatibility, and can match tooth color when used as a dental implant. Recently, given the materials' resemblance to human teeth, these ceramics have emerged as an alternative to titanium implants. Since the introduction of CAD/CAM in the manufacture of ceramic implants, they've been increasingly used for prosthetic restoration where aesthetics and strength are required. In this study, to improve the surface roughness of zirconia implants, we modified the 3Y-TZP surface with a biocomposite of hydroxyapatite and forsterite using room temperature spray coating methods, and investigated the mixed effect of the two powders on the evolution of surface microstructure, i.e., coating thickness and roughness, and biological interaction during the in vitro test in SBF solution. We compared improvement in bioactivity by observing dissolution and re-precipitation on the specimen surface. From the results of in vitro testing in SBF solution, we confirmed improvement in the bioactivity of the 3Y-TZP substrate after surface modification with a biocomposite of hydroxyapatite and forsterite. Surface dissolution of the coating layer and the precipitation of new hydroxyapatite particles was observed on the modified surface, indicating the improvement in bioactivity of the zirconia substrate.

Synthesis of Carbon Nano Silicon Composites for Secondary Battery Anode Materials Using RF Thermal Plasma (RF 열플라즈마를 이용한 이차전지 음극재용 탄소나노실리콘복합소재 합성)

  • Soon-Jik Lee;Dae-Shin Kim;Jeong-Mi Yeon;Won-Gyu Park;Myeong-Seon Shin;Seon-Yong Choi;Sung-Hoo Ju
    • Korean Journal of Materials Research
    • /
    • v.33 no.6
    • /
    • pp.257-264
    • /
    • 2023
  • To develop a high capacity lithium secondary battery, a new approach to anode material synthesis is required, capable of producing an anode that exceeds the energy density limit of a carbon-based anode. This research synthesized carbon nano silicon composites as an anode material for a secondary battery using the RF thermal plasma method, which is an ecofriendly dry synthesis method. Prior to material synthesis, a silicon raw material was mixed at 10, 20, 30, 40, and 50 wt% based on the carbon raw material in a powder form, and the temperature change inside the reaction field depending on the applied plasma power was calculated. Information about the materials in the synthesized carbon nano silicon composites were confirmed through XRD analysis, showing carbon (86.7~52.6 %), silicon (7.2~36.2 %), and silicon carbide (6.1~11.2 %). Through FE-SEM analysis, it was confirmed that the silicon bonded to carbon was distributed at sizes of 100 nm or less. The bonding shape of the silicon nano particles bonded to carbon was observed through TEM analysis. The initial electrochemical charging/discharging test for the 40 wt% silicon mixture showed excellent electrical characteristics of 1,517 mAh/g (91.9 %) and an irreversible capacity of 133 mAh/g (8.1 %).

Ensembles of neural network with stochastic optimization algorithms in predicting concrete tensile strength

  • Hu, Juan;Dong, Fenghui;Qiu, Yiqi;Xi, Lei;Majdi, Ali;Ali, H. Elhosiny
    • Steel and Composite Structures
    • /
    • v.45 no.2
    • /
    • pp.205-218
    • /
    • 2022
  • Proper calculation of splitting tensile strength (STS) of concrete has been a crucial task, due to the wide use of concrete in the construction sector. Following many recent studies that have proposed various predictive models for this aim, this study suggests and tests the functionality of three hybrid models in predicting the STS from the characteristics of the mixture components including cement compressive strength, cement tensile strength, curing age, the maximum size of the crushed stone, stone powder content, sand fine modulus, water to binder ratio, and the ratio of sand. A multi-layer perceptron (MLP) neural network incorporates invasive weed optimization (IWO), cuttlefish optimization algorithm (CFOA), and electrostatic discharge algorithm (ESDA) which are among the newest optimization techniques. A dataset from the earlier literature is used for exploring and extrapolating the STS behavior. The results acquired from several accuracy criteria demonstrated a nice learning capability for all three hybrid models viz. IWO-MLP, CFOA-MLP, and ESDA-MLP. Also in the prediction phase, the prediction products were in a promising agreement (above 88%) with experimental results. However, a comparative look revealed the ESDA-MLP as the most accurate predictor. Considering mean absolute percentage error (MAPE) index, the error of ESDA-MLP was 9.05%, while the corresponding value for IWO-MLP and CFOA-MLP was 9.17 and 13.97%, respectively. Since the combination of MLP and ESDA can be an effective tool for optimizing the concrete mixture toward a desirable STS, the last part of this study is dedicated to extracting a predictive formula from this model.

Statistical Optimization of Culture Conditions of Probiotic Lactobacillus brevis SBB07 for Enhanced Cell Growth (프로바이오틱 Lactobacillus brevis SBB07의 균체량 증가를 위한 배양 조건 최적화)

  • Jeong, Su-Ji;Yang, Hee-Jong;Ryu, Myeong Seon;Seo, Ji Won;Jeong, Seong-Yeop;Jeong, Do-Youn
    • Journal of Life Science
    • /
    • v.28 no.5
    • /
    • pp.577-586
    • /
    • 2018
  • We recently reported the potential probiotic properties of Lactobacillus brevis SBB07 isolated from blueberries. The present study investigates the effect of culture conditions such as temperature, initial pH, culture time, and medium constituent for industrial application. The ingredients of the medium to improve cell growth were selected by Plackett-Burman design (PBD) and central composite design (CCD) within a desirable range. The PBD was applied with 19 factors: seven carbon sources, six nitrogen sources, and six microelements. Protease peptone, corn steep powder (CSP), and yeast extract were found to be significant factors for the growth of SBB07. The CCD was then applied with three variables found from the PBD at five levels, and the optimum values were decided for the three variables: protease peptone, CSP, and yeast extract. In the case of the growth of SBB07, the proposed optimal media contained 2.0% protease peptone, 2.5% CSP, and 2.0% yeast extract, and the maximum dried-cell weight was predicted to be 2.93963 g/l. By the model verification, it was confirmed that the predicted and actual results are similar. Finally, the study investigated the effects of incubation temperature and initial pH at the optimized medium. It was confirmed that the dried-cell weight increased from $2.2933{\pm}0.0601g/l$ to $3.85{\pm}0.0265g/l$ when compared to the basal medium at $37^{\circ}C$ and initial pH 8.0. Establishing the optimal culture condition for SBB07 provides good potential for applications in probiotics and can serve as the foundation for the industrialization of materials.

A Comparison of Structural Characterization of Composite Alumina Powder Prepared by Sol-Gel Method According to the Promoters (졸-겔법으로 제조된 복합 알루미나 미분체의 첨가제에 의한 구조적 특성 비교)

  • Lee, Jung-Woon;Yoon, Ho-Sung;Chae, U-Suk;Park, Han-Jin;Hwang, Un-Yeon;Park, Hyung-Sang;Park, Dal-Ryung;Yoo, Seung-Joon
    • Korean Chemical Engineering Research
    • /
    • v.43 no.4
    • /
    • pp.503-510
    • /
    • 2005
  • In this research, composite alumina was prepared to add the various promoters by sol-gel method and examined its thermal stability. After sintering at $1,200^{\circ}C$, the thermal stability resulted in following order, $Si{\fallingdotseq}La$ > Ti > $Ba{\fallingdotseq}Ce$ > Y > $Zr{\fallingdotseq}Mg$, in accordance with adding the promoters. Especially in case of silica-added alumina, a phase transformation temperature to ${\alpha}$-alumina increased about $150^{\circ}C$ and after sintering at $1,200^{\circ}C$, it showed to maintain in ${\gamma}$-form and ${\delta}$-form alumina phase. Also it showed an increase of surface area from $3m^2/g$ to $71m^2/g$ compared with pure ${\alpha}$-alumina. In the case of silicaadded alumina, the characterization change of this alumina particle resulted in a delay of phase transformation because Si-O-Al bond was increased when sintered at high temperature. In case of lanthanum-added alumina, there was a sintering delay phenomenon in inter-particles as $LaAlO_3$ structure existed. The existence of lanthanum structure was confirmed by XRD and XPS analysis. It appeared on the alumina surface as $La_2O_3$ structure when it was sintered under $1,000^{\circ}C$, as the perovskite structure of $LaAlO_3$ at above $1,000^{\circ}C$ and as the magneto-plumbite structure of $LaAl_{11}O_{18}$ at above $1,300^{\circ}C$.

Glycerol Steam Reforming for Hydrogen Production on Metal-ceramic Core-shell CoAl2O4@Al Composite Structures (금속-세라믹 Core-Shell CoAl2O4@Al 구조체를 적용한 불균일계 촉매의 글리세롤 수소전환 반응특성)

  • Kim, Jieun;Lee, Doohwan
    • Clean Technology
    • /
    • v.21 no.1
    • /
    • pp.68-75
    • /
    • 2015
  • In this study, we investigated the structure and properties of a highly heat conductive metal-ceramic core-shell CoAl2O4@Al micro-composite for heterogeneous catalysts support. The CoAl2O4@Al was prepared by hydrothermal surface oxidation of Al metal powder, which resulted in the structure with a high heat conductive Al metal core encapsulated by a high surface area CoAl2O4 shell. For comparison, CoAl2O4 was also prepared by co-precipitation method and also utilized for a catalyst support. Rh catalysts supported on CoAl2O4@Al and CoAl2O4 were prepared by incipient wetness impregnation and characterized by N2 adsorption, X-ray diffraction (XRD), scanning electron microscopy (SEM), CO chemisorption, and temperature-programmed reduction (TPR). The properties of catalysts were investigated for glycerol steam reforming reaction for hydrogen production at 550 ℃. Rh/CoAl2O4@Al exhibited about 2.8 times higher glycerol conversion turnover frequency (TOF) than Rh/CoAl2O4 due to facilitated heat transport through the core-shell structure. The CoAl2O4@Al and CoAl2O4 also showed some catalytic activities due to a partial reduction of Co on the support, and a higher catalytic activity was also found on the CoAl2O4@Al core-shell than CoAl2O4. These catalysts, however, displayed deactivation on the reaction stream due to carbon deposition on the catalysts surface.

Study on Filler Effects of High Temperature Glass Sealant (고온용 유리 봉합재의 filler 첨가효과)

  • 손용배;김상우;김민호
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.6 no.1
    • /
    • pp.51-58
    • /
    • 1999
  • The effects of glass composition on the wettability and reactivity with $ZrO_2$substrate was evaluated and fabrication variables and glass compositions was investigated. Various glass compositions was investigated. Alkaline earth silicate glass show good wettability and lower viscosity and crystallization of glass could be prevented by $B_2O_3$.The sealant glass begin to wet on $ZrO_2$substrate below $900^{\circ}C$ and porosity occurred in various glass compositions, the crystallization and porosity in the glass could be prevented by the addition of flux into glass composition. But flowability and reactivity of glass with $ZrO_2$substrate was enhanced. Processing variables should be optimized to reduce the porosity by enhancing the sintering of glass powder. Many silicate glasses were investigated for the applications of high temperature sealants. Wetting and bonding of glass was good enough to seal together between $ZrO_2$and other ceramic components of SOFC. But porosity and reaction layer were occurred in the sealant glass. It will be possible to produce glass sealant without porosity and reaction layer at the interface by optimization of processing variable and modify the glass compositions. In present study, wettability of glass-filler composite was investigated. The porosity, shape of filler and interfacial reactions of sealant glass with fillers were examined.

  • PDF

Sensitivity Measurement of the Piezoelectric Paint Sensor according to the Poling Electric Field (분극 전계에 따른 압전 페인트 센서 감도 측정)

  • Han, Dae-Hyun;Park, Seung-Bok;Kang, Lae-Hyong
    • Composites Research
    • /
    • v.27 no.4
    • /
    • pp.146-151
    • /
    • 2014
  • In this study, the experimental study has been performed by varying the polarization of the electric field and impact force to check the piezoelectric characteristics of piezoelectric paint sensor. Piezoelectric paint sensor used in this study is composed of epoxy resin with a hardener and PNN-PZT powder in 1:1 weight ratio. The dimensions of the paint sensor specimen are $40{\times}40{\times}1mm^3$ and regular specimens were made using a mold. The voids are removed from the specimen in the vacuum desiccator. Both upper side and bottom side of the paint sensor were coated with silver paste for making an electrode and then dried at room temperature for a day. The poling treatment has been carried out under controlled conditions of the electric field in order to check the effect of piezoelectric sensitivities, while the poling temperature was fixed at room temperature and the poling time was set to 30 min. The piezoelectric sensitivities have been measured by comparing output voltage from paint sensor with output force from impact hammer when the impact hammer hits the paint sensor. In result, the effect of the electric field has been evaluated for the sensitivity and describe the result.

Optimization of Dressing Preparation from Yogurt Added Saururus chinensis (Lour.) Bail Extract (삼백초 추출물 첨가 요구르트를 이용한 드레싱 제조의 최적화)

  • HwangBo Mi-Hyang;Kim Hyun-Jeong;Yu Mi-Hee;Lee Ji-Won;Lee In-Sean
    • Korean journal of food and cookery science
    • /
    • v.22 no.1 s.91
    • /
    • pp.22-29
    • /
    • 2006
  • Yogurt base was prepared from milk powder $(14\sim18%)$ to which was added 0.4% Saururus chinensis (Lour.) Bail water extract (SCE) and fermented with lactic acid bacteria (a mixed strain of Streptococcus thermophilus and Lactobacillus bulgaricus) at $37^{\circ}C$ for 24 hr. The viscosity of the yogurt added SCE (SCE yogurt) made from 18% milk was higher than that of SCE yogurt containing $14\sim16%$ milk, whereas the pH and titratable acidity of the SCE yogurt were not significantly different on the range of milk contents. The optimal milk concentration for SCE yogurt manufacture was 18%. In order to optimize the preparation of dressing from SCE yogurt, the central composite design was conducted in terms of the yogurt (30, 40, 50, 60, 70 g), the mayonnaise (6, 12, 18, 24, 30 g) and the salt (0.1, 0.3, 0.5, 0.7, 0.9 g) contents. Sensory evaluation was performed and evaluated using a response surface methodology. The optimum ingredient ratio for SCE yogurt dressing was determined to be 61.2% of yogurt, 23.5% of mayonnaise, 0.58% of salt, 0.58% of honey, 1.75% of mustard, 0.23% of Tabasco pepper sauce, 0.94% of wine and 0.04% of white pepper.

Effect of TiB2 Coating on the Mechanical Properties of B4C/Al Composites Prepared by Infiltration Process (TiB2코팅이 함침법으로 제조되는 B4C/Al 복합체의 기계적 특성에 미치는 영향)

  • 김선혜;임경란;심광보;김창삼
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.8
    • /
    • pp.777-783
    • /
    • 2003
  • The mechanical properties of B$_4$C/Al composites normally depend on the species and quantity of reaction products between B$_4$C and Al and then the control of reaction products is necessary to make desirable composites for lightweight advanced or armor materials. TiB$_2$ is chemically inert with aluminum and has a lower contact angle (85$^{\circ}$ at 100$0^{\circ}C$) to liquid aluminum than B$_4$C. Thus, TiB$_2$ coating on B$_4$C may lower infiltration temperature of aluminum when the B$_4$C/Al composites is fabricated by infiltration process. In this study, the effects of TiB$_2$ on the microstructure and mechanical properties of the B$_4$C/Al composites have been investigated. TiB$_2$ coated B$_4$C powder was prepared using the sol-gel technique. It was found that the B$_4$C surface is homogeneously covered with TiB$_2$ having a particles size of 20-50 nm. While the B$_4$C/Al composites prepared by infiltration after TiB$_2$ coating had 17 wt% of unreacted Al, on the other hand, the B$_4$C/Al composites without coating included 14 wt% of Al. As a result, the composites infiltrated after the coating showed higher fracture toughness and lower hardness. This strongly suggests that TiB$_2$ not only lowers the infiltration temperature, but also inhibits the reaction between B$_4$C and Al.