A Comparison of Structural Characterization of Composite Alumina Powder Prepared by Sol-Gel Method According to the Promoters

졸-겔법으로 제조된 복합 알루미나 미분체의 첨가제에 의한 구조적 특성 비교

  • Lee, Jung-Woon (Department of Chemical Engineering, Sogang University) ;
  • Yoon, Ho-Sung (Division of Minerals Utilization and Materials, Korea Institute of Geoscience and Mineral Resources) ;
  • Chae, U-Suk (Department of Chemical Engineering, Sogang University) ;
  • Park, Han-Jin (Department of Chemical Engineering, Sogang University) ;
  • Hwang, Un-Yeon (Department of Chemical Engineering, Sogang University) ;
  • Park, Hyung-Sang (Department of Chemical Engineering, Sogang University) ;
  • Park, Dal-Ryung (LNG Technology Research Center, KOGAS) ;
  • Yoo, Seung-Joon (Faculty of Environmental and Chemical Engineering, Seonam University)
  • 이정운 (서강대학교 화학공학과) ;
  • 윤호성 (한국지질자원연구원 자원활용연구부) ;
  • 채의석 (서강대학교 화학공학과) ;
  • 박한진 (서강대학교 화학공학과) ;
  • 황운연 (서강대학교 화학공학과) ;
  • 박형상 (서강대학교 화학공학과) ;
  • 박달령 (한국가스공사 연구개발원 LNG기술연구센타) ;
  • 유승준 (서남대학교 환경화학공학부)
  • Received : 2004.12.27
  • Accepted : 2005.06.13
  • Published : 2005.08.31

Abstract

In this research, composite alumina was prepared to add the various promoters by sol-gel method and examined its thermal stability. After sintering at $1,200^{\circ}C$, the thermal stability resulted in following order, $Si{\fallingdotseq}La$ > Ti > $Ba{\fallingdotseq}Ce$ > Y > $Zr{\fallingdotseq}Mg$, in accordance with adding the promoters. Especially in case of silica-added alumina, a phase transformation temperature to ${\alpha}$-alumina increased about $150^{\circ}C$ and after sintering at $1,200^{\circ}C$, it showed to maintain in ${\gamma}$-form and ${\delta}$-form alumina phase. Also it showed an increase of surface area from $3m^2/g$ to $71m^2/g$ compared with pure ${\alpha}$-alumina. In the case of silicaadded alumina, the characterization change of this alumina particle resulted in a delay of phase transformation because Si-O-Al bond was increased when sintered at high temperature. In case of lanthanum-added alumina, there was a sintering delay phenomenon in inter-particles as $LaAlO_3$ structure existed. The existence of lanthanum structure was confirmed by XRD and XPS analysis. It appeared on the alumina surface as $La_2O_3$ structure when it was sintered under $1,000^{\circ}C$, as the perovskite structure of $LaAlO_3$ at above $1,000^{\circ}C$ and as the magneto-plumbite structure of $LaAl_{11}O_{18}$ at above $1,300^{\circ}C$.

본 연구는 졸-겔법을 이용하여 복합 알루미나를 제조하였고, 다양한 첨가제의 첨가에 의한 복합 알루미나의 열적 안정성을 고찰하였다. $1,200^{\circ}C$에서 소성시킨 복합 알루미나의 열적 안정성은 사용된 첨가제에 따라서 $Si{\fallingdotseq}La$ > Ti > $Ba{\fallingdotseq}Ce$ > Y > $Zr{\fallingdotseq}Mg$ 순으로 나타났다. 특히 실리카 첨가시 ${\alpha}$-알루미나로의 상전이 온도를 $150^{\circ}C$이상 높여 $1,200^{\circ}C$에서 소성 후에도 ${\gamma}$-형에서 ${\delta}$-형의 알루미나 상을 유지함을 알 수 있었고, 비표면적이 $3m^2/g$${\alpha}$-알루미나에 비해 $71m^2/g$(비표면적) 범위까지 증가됨을 보였다. 이러한 알루미나 입자의 특성변화는 실리카 첨가 알루미나의 경우 고온으로 소성시 Si-O-Al의 결합의 증가로 인하여 알루미나의 상전이를 지연시키는 결과로 나타나고, 란타늄 첨가 알루미나의 경우 $LaAlO_3$ 구조의 존재로 인해 알루미나의 입자간 소결을 지연시킴을 알 수 있었다. 또한 란타늄 첨가시 $1,000^{\circ}C$ 이하에서 소성시킨 경우 란타늄이 알루미나 표면에 $La_2O_3$ 구조로 존재하나 $1,000^{\circ}C$ 이상에서는 $LaAlO_3$의 perovskite 구조로 존재하고, $1,300^{\circ}C$ 이상에서는 $LaAl_{11}O_{18}$의 magneto-plumbite 구조로 존재함을 XRD와 XPS 분석 결과에 의해 확인할 수 있었다.

Keywords

Acknowledgement

Supported by : 에너지관리공단

References

  1. Lafarga, D., Lafuente, A., Menendez, M. and Santamaria, J., 'Thermal Stability of $\gamma-Al_{2}O_{3}/\alpha-Al_{2}O_{3}$ Mesoporous Membranes,' J. of Membrane Science, 147(2), 173-185(1998) https://doi.org/10.1016/S0376-7388(98)00134-3
  2. Schaper, H., Doesburg, E. B. M. and Reijen, Van, L. L., 'The Influence of Lanthanum Oxide on The Thermal Stability of Gamma Alumina Catalyst Supports,' Applied Catalysis, 7(2), 211-220(1983) https://doi.org/10.1016/0166-9834(83)80009-8
  3. Yokokawa, T. and Kleppa, O. J., 'A Calorimetric Study of the Transformation of Some Metastable Modifications of Alumina to $\alpha$-Alumina,' J. of Physical Chemistry, 68(11), 3246-3249(1964) https://doi.org/10.1021/j100793a028
  4. Rossignol, S. and Kappenstein, C., 'Effect of Doping Elements on the Thermal Stability of Transition Alumina,' International J. of Inorganic Materials, 3(1), 51-58(2001) https://doi.org/10.1016/S1466-6049(00)00088-X
  5. Xue, L. A. and Chen, I. W., 'Influence of Additives on the Gamma-to- Alpha Transformation of Alumumina,' J. of Materials Science Letters, 11(8), 443-445(1992) https://doi.org/10.1007/BF00731098
  6. Oudet, F., Vejux, A. and Courtine, P., 'Evolution During Thermal- Treatment of Pure and Lanthanum-Doped $Pt/Al_{2}O_{3}$ and Pt- Rh/$Al_{2}O_{3}$ Automotive Exhaust Catalysts-transmission Electronmicroscopy Studies on Model Samples,' Applied Catalysis, 50(1), 79-86(1989) https://doi.org/10.1016/S0166-9834(00)80827-1
  7. Church, J. S. and Cant, N. W., 'Stabilization of Aluminas by Rare-Earth and Alkaline-Earth Ions,' Applied Catalysis A: General, 101(1), 105-116(1993) https://doi.org/10.1016/0926-860X(93)80141-C
  8. Gonzalez, R. D. and Zou, W., 'Thermal-Stability of Silica-Sup- Ported Palladium Catalysts Prepared by the Sol-Gel Method,' Applied Catalysis A: General, 126(2), 351-364(1995) https://doi.org/10.1016/0926-860X(95)00043-7
  9. Ozawa, M. and Kimura, M., 'Effect of Cerium Addition on the Thermal-Stability of Gamma-Alumina Support,' J. Mater. Sci. Lett., 9(3), 291-293(1990) https://doi.org/10.1007/BF00725828
  10. Yoo, S. J., Lee, J. W., Hwang, W.-Y., Yoon, H.-S. and Park, H.-S., 'A Study on the Peptization Reaction Accompanied with $\gamma-Al_{2}O_{3}$ Particles Preparation by Sol-Gel Method,' HWAHAK KONGHAK, 36(5), 695-700(1998)
  11. Yoldas, B. E., 'A Transparent Porous Alumina,' Ceramic Bullentin, 54(3), 286-288(1975)
  12. Yoldas, B. E., 'Alumina Sol Preparation From Alkoxides,' Amer. Ceram. Soc. Bull., 54(3), 289-290(1975)
  13. Peri, J. B., 'Infrared and Gravimetric Study of the Surface Hydration of $\gamma$-alumina,' J. of Physical Chemistry, 69(1), 211-219(1965) https://doi.org/10.1021/j100885a032
  14. Brunauer, S., Deming, L. S., Deming, W. S. and Teller, E., 'On A Theory of the Van Der Waals Adsorption of Gases,' J. Am. Chem. Soc., 62(7), 1723-1732(1940) https://doi.org/10.1021/ja01864a025
  15. de Boer, J. H., 'The Structure and Properties of Porous Materials,' Butterworths, London, 10, 68(1958)
  16. Bettman, M., Chase, R. E., Otto, K. and Weber, W. H., 'Dispersion Studies on the System $La_{2}O_{3}/Gamma-Al_{2}O_{3}$,' J. of Cat., 117(2), 447-454(1989) https://doi.org/10.1016/0021-9517(89)90354-0
  17. Schaper, H., Doesburg, E. B. M. and Van Reijen, L. L., 'The Influence of Lanthanum Oxide on The Thermal Stability of Gamma Alumina Catalyst Supports,' Applied Catalysis, 7(2), 211-220 (1983) https://doi.org/10.1016/0166-9834(83)80009-8
  18. Schaper, H., Doesburg, E. B. M. and Van Reijen, L. L., 'The Influence of High Partial Steam on the Sintering of Lanthanum Oxide Doped Gamma Alumina,' Applied Catalysis, 9(1), 129-132 (1984) https://doi.org/10.1016/0166-9834(84)80043-3
  19. Chen, X., Liu, Y., Niu, G., Yang, Z., Bian, M. and He, A., 'High Temperature Thermal Stabilization of Alumina Modified by Lanthanum Species,' Applied Catalysis A: General, 205(1-2), 159-172 (2001) https://doi.org/10.1016/S0926-860X(00)00543-3