• Title/Summary/Keyword: potting medium

Search Result 40, Processing Time 0.032 seconds

Optimum Potting Medium and Nitrogen and Phosphorus Levels in the Soil for Root Nodule Formation in Black Locust (Robinia pseudoacacia L.) Seedlings (아까시나무(Robinia pseudoacacia L.) 유묘의 뿌리혹 형성에 적절한 배양토, 질소, 인 수준 구명에 관한 연구)

  • Lee, Kyung Joon;Lee, Hyun Ung;Kim, Taeyoo
    • Journal of Korean Society of Forest Science
    • /
    • v.101 no.3
    • /
    • pp.443-453
    • /
    • 2012
  • The objectives of this study were to find out proper potting medium and nutrient levels in the soil to promote the root nodule formation in black locust (Robinia pseudoacacia L.) seedlings. Commercial potting medium, compost, organic fertilizer, molded forest fertilizer, and compound fertilizer were used at different mixing rates to bring in various levels of mineral nutrients in the soil. Seedlings were grown in pots in a greenhouse for three months. Commercial potting medium containing peatmoss, vermiculite, and geolite was not suited for early nodule formation due to lack of nutrients, even though it produced good total dry weight. Compost was the best medium to promote both high total dry weight production and nodule formation with providing the proper levels of nitrogen and phosphorus in the soil. Molded forest fertilizer was acceptable for nodule formation. Compound fertilizer and organic fertilizer was not suited for nodule formation. The potting medium should contain optimum levels of nitrogen (0.05-0.2%) and phosphorus (100-600ppm) to promote early nodule formation in black locust seedlings.

Effects of Nutrient Solution Application Methods and Rhizospheric Ventilation on Vegetative Growth of Young Moth Orchids without a Potting Medium in a Closed-Type Plant Factory

  • Min, Sang Yoon;Oh, Wook
    • Journal of People, Plants, and Environment
    • /
    • v.23 no.5
    • /
    • pp.545-554
    • /
    • 2020
  • Background and objective: Moth orchids in the vegetative stage are suitable for a multi-layer growing environment in a closed-type plant factory which can be a good alternative that can reduce production costs by reducing cultivation time and energy cost per plant. This study was conducted to find out the optimal rhizospheric environment for different irrigation methods without a potting medium and rhizospheric ventilation for the vegetative growth of young Phalaenopsis hybrid 'Blanc Rouge' (P. KV600 × P. Kang 1) and Phalaenopsis Queen Beer 'Mantefon' in a closed-type plant factory system. Methods: The one-month-old clonal micropropagules with bare roots rapped with a sponges were fixed on the holes of styrofoam plates above growth beds, and were watered using the ebb-and-flow (EBB) and aeroponic (AER) methods with Ichihashi solution (0.5 strength) once a day at 06:00 (P) or 18:00 (S), and both (PS). Rhizospheric ventilation (V) was also applied to change the temperature, relative humidity, and CO2 concentration of the beds. Plants potted into sphagnum moss and watered once a week were used as the control group. Results: After 12 months of treatment, the growth characteristics of the EBB groups were the best among the treatment groups without a medium, but no effect of irrigation timing was observed. V reduced the temperature, relative humidity and CO2 concentration of the beds. Whereas, EBB+V (ebb-and-flow with ventilation) improved plant growth and reduced the occurrence of disorders and withering. Especially, EBB+V showed a similar performance to the control group. Conclusion: The results indicated that the optimal irrigation method without a potting medium for producing middle-aged potted moth orchids was the EBB system with forced rhizospheric ventilation. Therefore, further studies on the optimal ventilation method and moisture control of the crown need to be carried out to develop the irrigation system without a potting medium for vertical farming in closed-type plant factories.

Effect of Commercial Organic :Medium Amended with Vermicast on the Growth of Rice Seedlings(Oryza sativa L.) -Amended with Vermicast of Oyster Mushroom Waste- (지렁이 분립을 첨가한 유기상토가 벼의 유식물체 생육에 미치는 영향 -느타리버섯 폐배지로 생산한 분립의 첨가-)

  • Lee, Ju-Sam;Kim, In-Soo
    • Korean Journal of Organic Agriculture
    • /
    • v.17 no.1
    • /
    • pp.55-62
    • /
    • 2009
  • In this paper, we assessed the growth of rice seedlings(Chucheong variety) in commercial organic growth medium that was substituted with different ratios of vermicast of oyster mushroom waste grown under potting alone, and potting and floor layering treatment. The commercial organic growth medium was substituted with vermicast at ratios of control, 2%, 4% and 6%, respectively. The control consisted of commercial organic growth medium alone without vermicast. Incorporation of $4%{\sim}6%$ vermicast of oyster mushroom waste into a commercial organic growth medium enhanced the growth of rice seedlings significantly as compared to commercial organic growth medium alone(control), and 2% amended with vermicast in potting treatment. This results demonstrate that substitution with low ratios of vermicast($4%{\sim}6%$) will promote growth of rice seedlings. The growth of rice seedlings in commercial organic growth medium alone without vermicast was enhanced significantly as compared to the substituted with vermicast in floor layering treatment, it may due to nutrient uptake by elongated root from the vermicast when applied to on the floor layering. Floor layering treatment is an effective method for potting processing of vermicast. The vermicast of oyster mushroom waste should have a high safety and great potential as materials of growth media for increasing plant growth, either as soil conditioner, or as substitution or amendments to commercial organic growth medium. For the enhanced growth of rice seedlings, demand to increase with total nitrogen, and decrease with the carbon and nitrogen ratio(C/N) of commercial organic growth medium supplied by such as vermicast.

  • PDF

Effect of Commercial Organic Medium Amended with Vermicast on the Growth of Rice Seedlings(Oryza sativa L.) -Amended with Vermicast of Fermented Pig Manure with Sawdust- (지렁이 분립을 첨가한 유기상토가 벼의 유식물체 생육에 미치는 영향 - 톱밥발효 돈분으로 생산한 분립의 첨가 -)

  • Lee, Ju-Sam;Kim, In-Soo
    • Korean Journal of Organic Agriculture
    • /
    • v.16 no.3
    • /
    • pp.299-308
    • /
    • 2008
  • In this study, the effect of commercial organic growth medium amended with different ratios of vermicast on the growth of rice seedlings. The amended ratios of vermicast were 0% (control), 5%, 10%, 20% and 40%, respectively. A bioassay with two rice varieties (Chucheng and Black) was conducted to assesses the amendment effect of vermicast on the seedling growth in two potting methods. In potting treatment, the Chucheng variety with late maturity showed significantly higher values on growth parameters excepted root weight (RW) up to 20% and Black variety with early maturity up to 10% amended with vermicast, respectively. In floor layering treatment, all of the growth parameters significantly increased up to 5% amended with vermicast in both rice variety. The seedling growth of rice in floor layering treatment attained the highest values at lower amended ratios of vermicast than those of potting treated only, it may correspond with increased uptake of nutrient by elongated root grown under the layering amendment of vermicast. Vermicasts can be used as soil amendments or components of plant growth medium for seeding organic agriculture.

  • PDF

Cultivate Characterics of Chili Growth using Nutrient Solution in Articifial Soil (인공 토양에서의 양액을 이용한 고추의 재배 특성)

  • Yoon, Sang Jin;Sean, Keefe Dimas Harris;Kwon, Soon Hong;Chung, Sung Won;Kwon, Soon Goo;Park, Jong Min;Kim, Jong Soon;Choi, Won Sik
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.20 no.5
    • /
    • pp.351-357
    • /
    • 2017
  • Growing plant in potting media without soil is known as Soilless cultivation. This method is used mostly in greenhouse cultivation to increase horticultural commodities production. Peat moss is commonly utilized as potting media substrate because of its characteristic. However, peat moss price is high because of the quantity of peat moss in nature has been decreased. Recently, most of the research is conducted to find the alternative growing medium to cultivate horticulture plant in potting media. Perlite and rice husk ash were mentioned that had a potent as alternative growing media for seasonal plants to increase agriculture production due to the lack of production area. This study aimed to determine the effect of using different substrate and growth performance of chili. The method used was the soilless cultivation. The chili was planted in the pot with perlite media, rice husk ash media, and peat moss media. The chili was measured after 65 days after planting. The result showed that rice husk ash and perlite were more potentials in chili growth performance than peat moss. Rice husk ash had the significant result of plant height. While, Perlite effect on root length, plant weight, leaf length, and stem diameter. The best alternative for cultivation chili without substrate based on this research was perlite then rice husk ash and peat moss.

Growth Performance of Chinese Cabbage using Soilless Cultivation Method

  • Keefe, Dimas Harris Sean;Yoon, Sangjin;Kwon, Soonhong;Kwon, Soongu;Park, Jongmin;Kim, Jongsoon;Chung, Songwon;Choi, Wonsik
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.22 no.1
    • /
    • pp.55-60
    • /
    • 2019
  • Growing plant in potting media without soil is known as Soilless cultivation. This method is used mostly in greenhouse cultivation to increase horticultural commodities production. Peat moss is commonly utilized as potting media substrate because of its characteristic. However, peat moss price is high because of the quantity of peat moss in nature has been decreased. Recently, most of the research is conducted to find the alternative growing medium to cultivate horticulture plant in potting media. Perlite and rice husk ash were mentioned that had a potent as alternative growing media for seasonal plants to increase agriculture production due to the lack of production area. This research aims to determine the growth of in rice husk ash, perlite and peat moss as growing substrates. The method used was the soilless cultivation. The chinese cabbage was planted in the pot with perlite media, rice husk ash media, and peat moss media. The chinese cabbage was measured after 35 days after planting. The result showed that peatmoss was more potentials in chinese cabbage growth performance than rice husk ash and perlite. Peat moss had the significant result of every research parameters such as plant height, plant weight, number of leaves, plant diameter, root length, and root weight. The best alternative for cultivation chinese cabbage without substrate based on this research was peat moss then rice husk ash and perlite.

Plant Regeneration from Leaf Explants of Kalanchoe daigremontiana Hamet & Perrier

  • ;Kim, Teh-Ryung;In, Jun-Gyo;Yang, Deok-Chun;Choi, Kwan-Sam
    • Korean Journal of Medicinal Crop Science
    • /
    • v.14 no.5
    • /
    • pp.293-298
    • /
    • 2006
  • Optimum culture conditions for high frequency plant regeneration from leaf explants of Kalanchoe daigremontiana Hamet &Perrier were established. Shoot regeneration was achieved from leaf explant cultures using MS medium supplemented with indole-3-acetic acid (IAA) and thidiazuron (TDZ) or benzyladenine (BA). Percent regeneration was influenced by plant growth regulators and source of explants. MS medium supplemented with TDZ (1.0 mg/l) and IAA (0.4 mg/l) was the most effective, providing shoot regeneration for 76.7 % of ex vitro leaf explants associated with a high number of shoots per explant (9.5 mean shoots per explant), whereas 100% shoot regeneration associated with 12.4 shoots per explant occurred from in vitro leaf explants on the same medium. Clusters of shoots were multiplied and elongated on MS medium containing several concentrations of BA. MS medium supplemented with 0.25 mg/l BA was proved as the most effective shoot elongation medium. Elongated shoots (2-3 cm) were rooted at 100% on half-strength MS medium. Rooted plantlets were then transferred to potting soil. Regenerated plants were established in the soil with 90% success.

Somatic Embryogenesis and Plant Regeneration in Tissue Cultures of Artemisia annua L.

  • Choi, Pil-Son;Min, Sung-Ran;Ko, Suk-Min;Liu, Jang-R.
    • Journal of Plant Biotechnology
    • /
    • v.34 no.3
    • /
    • pp.197-200
    • /
    • 2007
  • Mature seeds of Artemisia annua L. were placed onto Murashige and Skoog's (MS) medium supplemented with $4.52\;{\mu}M$ 2,4-dichlorophenoxyacetic acid (2,4-D). After 6 weeks of culture, off-white, compact calluses were formed on the plumule of seedlings at a frequency of 5.9%. Calluses were subcultured on the same medium. After an additional 2 weeks of subculture, calluses produced a few somatic embryos at a frequency of 28.8%. Upon transfer to MS basal medium, calluses producing a few somatic embryos gave rise to numerous somatic embryos, which subsequently developed into plantlets. Plantlets were successfully transplanted to potting soil and grown to maturity in a greenhouse.

In vitro Regeneration of Phragmites australis through Embryogenic Cultures

  • Lee Jeong-Sun;Kim Chang-Kyun;Kim In-Sung;Lee Eun-Ju;Choi Hong-Keun
    • Journal of Plant Biotechnology
    • /
    • v.8 no.1
    • /
    • pp.21-25
    • /
    • 2006
  • Phragmites australis (reed) has received much attention as being one of the principle emergent aquatic plants for treating industrial and civil wastewater. Plant regeneration via plant tissue culture in p. australis was investigated. Three types of callus were identified from seeds on N6 medium plus 4.5 UM 2,4-dichlorophenoxyacetic acid (2,4-D). Yellow compact type showed the best redifferentiation, whereas white compact type and yellow friable were not competent to differentiate into plane. Solid medium culture was better than liquid suspension culture for enhancing callus growth when N6 medium supplemented with 4.5 ${\mu}M$ 2,4-D was used. Phytagel, as a gelling agent, was superior to agar in plant regeneration on N6 medium, supplemented with 9.4 ${\mu}M$ kinetin and 0.54 ${\mu}M$ $\alpha$-naphthaleneacetic acid (NAA). Transfer of the plantlets regenerated from kinetin and NAA-supplemented N6 medium to growth regulator-free MS medium enhanced the further development of the plantlets. Plantlets on subsequently grown to maturity when tansferred to potting soil. The regenerated plants exhibited morphologically normal. The system for plant regeneration of P. australis enables to propagate elite lines on a large scale for water purification in the ecosystem

Use of Quantitative Models to Describe the Efficacy of Inundative Biological Control of Fusarium Wilt of Cucumber

  • Singh, Pushpinder P.;Benbi, Dinesh K.;Young, Ryun-Chung
    • The Plant Pathology Journal
    • /
    • v.19 no.3
    • /
    • pp.129-132
    • /
    • 2003
  • Fusarium wilt of cucumber caused by Fusarium oxy-sporum f. sp. cucumerinum is a serious vascular disease worldwide. Biological control of Fusarium wilt in several crops has been accomplished by introducing non-pathogenic Fusarium sup. and other biocontrol agents in soil or in infection courts. In this study, quantitative models were used to determine the biocontrol efficacy of inundatively applied antagonist formulations and the length of their effectiveness in controlling Fusarium wilt of cucumber. Quantitative model of the form [Y=L (1${-exp}^{-kx}$)] best described the relationship between disease incidence (Y, %) and inoculum density (X) of isolates F51 and F55. Isolate F51 was selected as a more virulent isolate based on the extent of its effectiveness in causing the wilt disease. The degree of disease control (Xi/X) obtained with the density of the biocontrol agent (Z), was described by the model [Xi/X=A (1${-exp}^{-cz}$)]. The zeolite-based antagonist formulation amended with chitosan (ZAC) was better at lower rates of application and peaked at around 5 g/ kg of the potting medium, whereas the peat-based antagonist formulation (PA) peaked at around 10 g/kg of the potting medium. ZAC formulation provided significantly better suppression of Fusarium wilt as described by the curvilinear relationship of the type Y= a+bX+c$X^2$, where Y represents percent disease incidence and X represents sustaining effect of the biocontrol agent.