• Title/Summary/Keyword: pot life

Search Result 273, Processing Time 0.033 seconds

The Growth Characteristics and Germanium Uptake by Water Celery in Soil Treated with Germanium (게르마늄 처리 토양에서 미나리 생육 특성과 게르마늄 흡수)

  • Lee, Seong-Tae;Lee, Young-Han;Heo, Jae-Young;Hong, Kwang-Pyo;Dahlgren, Randy A.;Heo, Jong-Soo
    • Korean Journal of Environmental Agriculture
    • /
    • v.27 no.2
    • /
    • pp.185-190
    • /
    • 2008
  • In order to obtain the basic information for agricultural utilization of Germanium(Ge), the growth characteristics and the germanium uptake by water celery were investigated at different concentration of germanium in soil. This experiment was carried out in the Wagner pot(1 $5,000^{-1}a$). Germanium concentrations in soil for water celery cultivation were maintained at 0.26, 25.0, 62.5, and 125.0 mg $kg^{-1}$, respectively. The treatment of over Ge 25.0 mg $kg^{-1}$ in the soil led to germanium phytotoxicity such as reduction of plant height and fresh weight. The contents of germanium in water celery were increased with the increase of germanium concentration in the soil. When water celery was cultivated from soil maintained with Ge 25.0 and 62.5 mg $kg^{-1}$, its germanium contents in plant were 89.9 and 371.6 mg $kg^{-1}$, respectively. Then, the efficiency of germanium uptake of water celery in Ge 25.0 and 62.5 mg $kg^{-1}$ maintained plots was 1.7 and 2.4%, respectively. When water celery was cultivated from soil maintained with Ge 25.0, 62.5 and 125.0 mg $kg^{-1}$, its content of amino acid was found to be 89.8, 198.4, and 318.2 mg $g^{-1}$, respectively. To investigate the effect of N fertilizer application in uptake of germanium by water celery, these were treated with nontreatment, 1.0, 1.5 and 2.0 times of N application based on soil testing for cultivation of water celery. However, the amount of the N fertilizer application did not affect the contents of germanium in the water celery. When water celery was cultivated from soil maintained with two kinds of inorganic and organic germanium 50 mg $kg^{-1}$, respectively, the content of germanium were 24.2 mg $kg^{-1}$ in the Ge-132 treatment and 11.8 mg $kg^{-1}$ in the $GeO_2$ treatment.

Biological Control of Tobacco Cutworm, Spodoptera litura (Lepidoptera: Noctuidae) by Steinernematid and Heterorhabditid Entomopathogenic Nematodes (Steinernematid와 Heterorhabditid 곤충병원성 선충을 이용한 담배거세미나방 (Spodoptera litura)의 생물적 방제)

  • Kim, Hyeong-Hwan;Cho, Sung-Rae;Choo, Ho-Yul;Lee, Sang-Myeong;Jeon, Heung-Yong;Lee, Dong-Woon
    • Korean journal of applied entomology
    • /
    • v.47 no.4
    • /
    • pp.447-456
    • /
    • 2008
  • Five effective strains against tobacco cutworm, Spodoptera litura (Lepidoptera: Noctuidae), Steinernema carpocapsae (GSN1), Steinernema sp. (GSNUS-10), Steinernema sp. (GSNUS-14), Heterorhabditis bacteriophora Hamyang (HbH), and Heterorhabditis sp. (GSNUH-1) were selected among 14 isolates of Korean entomopathogenic nematode in laboratory tests. $LC_{50}$ values of above five strains against tobacco cutworm were various by different nematode strains and developmental stages of tobacco cutworm. $LC_{50}$ value of S. carpocapsae (GSN1) was the lowest by $4.0{\sim}8.3$ infective juveniles (Ijs) and 2nd instars of tobacco cutworm was most susceptible. Pathogenicity of five effective strains against tobacco cutworm depends on nematode strain, concentration, and application times. The most effective strain was determined as S. carpocapsae (GSN1). Two or three times of applications were effective regardless of nematode strain, or concentration. Efficacy of S. carpocapsae (GSN1), Steinernema (GSNUS-10), Steinernema (GSNUS-14), and Heterorhabditis (GSNUH-1) was variable depending on nematode strain, concentration, application times, and host variety. S. carpocapsae (GSN1) was the most effective and inoculation of 100,000 infective juveniles per m2 (720,000 Ijs/7.2 $m^2=1{\times}10^9$ Ijs/ha) resulted in higher efficacy. Three times of application of nematodes led to higher control efficacy than one or two applications. Efficacy of nematodes was higher on Chinese cabbage than cabbage or kale.

Influence of Various Root Media in Pot Growth of 'Seolhyang' Strawberry on the Growth of Daughter Plants and Early Yield after Transplant ('설향' 딸기 포트육묘를 위한 혼합상토 종류가 자묘의 생육과 정식 후 초기수량에 미치는 영향)

  • Park, Gab Soon;Kim, Yeoung Chil;Ann, Seoung Won;Kang, Hee Kyoung;Choi, Jong Myung
    • Horticultural Science & Technology
    • /
    • v.33 no.2
    • /
    • pp.219-226
    • /
    • 2015
  • The objective of this research was to investigate the influence of various root media on the growth of mother and daughter plants during propagation and early yield after transplanting of 'Seolhyang' strawberry. To achieve this, daughter plants were fixed to connected small pots that contained expanded rice-hull (ERH), a strawberry-specialized commercial medium (SSCM), soil mother materials (SMM), or loamy sand (LS). Then, growth of daughter plants in above- and below-ground tissue as well as early yield after transplanting to plastic house soil were investigated. The growth of daughter plants in terms of plant height, leaf area and fresh weight were the highest in the SSCM treatment. Root growth in terms of the amount of primary roots and root dry weight were the highest in the treatments of ERH and SMM and the lowest in that of SSCM, among treatments tested. The ERH treatment also showed the highest values among treatments in root length, surface area and volume when roots with 0 to 0.4 mm in diameter were investigated. The flower bud differentiation of daughter plants began on Sept. 3 in the ERH treatments, earlier than the SMM (Sept. 5) and in SSCM (Sept. 7) treatments. The tissue N contents of daughter plants were in the range of 1.41 to 1.55% in all treatments, and no significant differences were observed among treatments. This indicates that the low moisture retention capacity of ERH and water stress, rather than tissue N contents, promote the flower differentiation of daughter plants. In the evaluation of early yield after transplant, the ERH treatment of showed the highest yield in the period from November to December, reaching 667 g fruit weight per 10 plants. The yields per 10 plants in the other treatments were 581 g in SMM, 475 g in SSCM and 295 g in LS. Above results imply that the various root media have different effects on the growth of daughter plants as well as flower bud differentiation. Therefore, improvement in early yield after transplant can be achieved through selection of proper root medium for daughter plant propagation.

Occurrence of Metalaxyl-Resistant Isolates of Pythium spp. Isolated from Turfgrasses of Golf Courses in Korea (우리나라 골프장 잔디에서 분리한 Metalaxyl 저항성 Pythium spp.의 발생)

  • Kim, Jin-Won;Park, Eun-Woo
    • The Korean Journal of Mycology
    • /
    • v.30 no.2
    • /
    • pp.157-165
    • /
    • 2002
  • Of 125 isolates collected from 35 golf courses, sensitivity of 44 isolates of Pythium species to metalaxyl was determined on corn meal agar with various concentrations of metalaxyl (0.1, 1.0, 10.0, 50.0, 100.0, and $250.0{\mu}g\;a.\;i/ml$). The isolates were able to be categorized into the sensitive and resistant groups based on hyphal growth measured in terms of colony diameters on the medium with $1.0\;and\;10.0{\mu}g\;a.\;i./ml$. When compared with hyphal growth on the medium without metalaxyl, hyphal growth of the sensitive group which included 31 isolates was inhibited by $66{\sim}98%$ on the medium with $1.0{\mu}g\;a.\;i./ml$, whereas that of the resistant group which included 13 isolates grew well and the hyphal growth was inhibited only by $6{\sim}26%$. When $10.0{\mu}g\;a.\;i./ml$ of metalaxyl was included in the medium, hyphal growth of the sensitive and resistant groups was inhibited by $82{\sim}99%\;and\;27{\sim}47%$, respectively. Occurrence of metalaxyl-resistant isolates of Pythium spp. not only from turfgrasses on golf courses but also from other crops was observed for the first time in Korea. Metalaxyl-resistant isolates occurred most frequently in P. graminicola. Control effects of metalaxyl were determined by applying metalaxyl after and before inoculation of 4 and 3 isolates of sensitive and resistant isolates of P. graminicola, respectively, to creeping bentgrass in pots. The minimum concentration of metalaxyl to control metalaxyl-sensitive isolates was $6.25{\mu}g\;a.\;i./ml$, whereas the disease caused by the metalaxyl-resistant isolates could not be controlled with $12.50{\mu}g\;a.\;i./ml$ of metalaxyl. The disease was controlled more effectively by an application of metalaxyl prior to inoculation than after occurrence of the disease.

Effects of Systematic Variation Application of Fe, Mn, Cu and Zn on these Contents in Orchardgrass and White Clover (Fe, Mn, Cu 및 Zn의 Systematic Variation 시비가 Orchardgrass 및 White Clover중 이들의 함량에 미치는 영향)

  • Jung, Yeun-Kyu
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.24 no.4
    • /
    • pp.271-280
    • /
    • 2004
  • This pot experiment was conducted to investigate the effects of systematic variation appling of Fe, Mn, Cu, and Zn on forage performance of orchardgrass and white clover. The treatments of systematic variation were 0/100, 25/75, 50/50, 75/25, and $100/0\%$ in the Fe/Cu(trial-1), Mn/Zn(trial-2), and Fe+Cu/Mn+Zn(trial-3), respectively. The treatments of Fe/Mn/Cu/Zn(trial-4) were $70\%$ in main-element and $10\% in other 3 sub-elements, respectively. 1. Compared with orchadgrass, white clover showed relatively consistent differences in the content of micronutrients as influenced by treatments of the systematic variation. The contents of Mn and Cu in the forages were significantly influenced by the application rates of Mn and Cu, respectively. The contents of Fe and Zn in the forages, however, were not significantly different among these treatments. 2. Compared with orchardgrass in the Fe/cu trial, white clover had not only the low content of Cu but also the Cu content and yield of white clover were greatly decreased by the low rate of application of Cu. In the Mn/Zn trial, the $0/100\%$ resulted in the severe decrease of Mn-content in both forages. The low content of Mn in white clover tended to be negatively correlated to the Mn-chlorosis, inferior growth and flowering, and low yield. 3. In the Fe+Cu/Mn+Zn trial, the application with $0/100\%$ and $0/100\%$ resulted in the relatively great decrease of Cu and Mn contents, respectively. These traits in white clover tended to be negatively correlated to the inferior growth and flowering, and low yield 4. In the Fe/Mn/Cu/Zn trial, the content of every main-elements in the forages were increased especially in Mn. In addition, the contents of sub-elements were likely to be somewhat negatively influenced by the treatment of main-element respectively.

Effects of Systematic Variation Application of Fe, Mn, Cu, and Zn on These Relative Contents, Uptake Amounts, and Mutual Ratios in Orchardgrass and White Clover (Fe, Mn, Cu, Zn의 Systematic Variation 시비가 Orchardgrass 및 White Clover중 이들의 상대 함량, 탈취량 및 상호비율에 미치는 영향)

  • Jung, Yeun-Kyu
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.24 no.4
    • /
    • pp.281-292
    • /
    • 2004
  • This pot experiment was conducted to investigate the effects of systematic variation appling of Fe, Mn, Cu, and Zn on forage performance of orchardgrass and white clover, The treatments of systematic variation were 0/100. 25/75, 50/50. 75/25, and $100/0\%$ in the Fe/Cu, Mn/Zn, and Fe+Cu/Mn+Zn trials, respectively. The treatments of Fe/Mn/Cu/Zn trial were $70\%$ in main-element and $10\%$ in other 3sub-elements. 1 . General differences had been showed in the relative contents, uptake amounts, and mutual ratios of Fe, Mn, Cu, and Zn between orchardgrass and white clover. The effects of Fe application on the all traits were generally insignificant. The Mn and Cu applications, however, showed consistent differences in the all traits. At the high relative content of Mn in the forages influenced by the Mn application, the relative contents of Fe, Cu and Zn were greatly decreased without the significant differences in common content. 2. The increase of uptake amount of each micronutrient was not positively correspond to the yield increase. In some cases, the uptake amount of micronutrient was greatly increased without the significant increase of yield. At the Mn application, the Mn uptake amount was relatively much more increased than increase of the yield. The uptake amount of each element was significantly increased by the application with Mn and Cu. However, it was not in the case of Fe and Zn. 3. The mutual ratios of micronutrients were more influenced by the applications of Mn and Cu, especially Mn, than those by the applications of Fe and Zn. In the Fe/cu trial, the ratios of Fe/Cu showed 6.0~ 10.5 in orchardgrass and 10.2~ $16.4\%$ level of difference in white clover. In the Fe+Cu/Mn+Zn trial, the ratios of Mn/Cu, Mn/Zn, and Fe/Mn were greatly influenced by the treatments. It has been also found that the poor growth of white clover was caused by the unbalanced ratios of Fe/Mn, and it tended to be enhanced by the good applications and mutual ratios of other elements.

Effects of Systematic Variation Application of Fe, Mn, Cu, and Zn on the Contents of N-compounds(Crude/Pure Protein) in Orchardgrass and White Clover (Fe, Mn, Cu 및 Zn의 Systematic Variation 시비가 Orchardgrass 및 White Clover의 질소화합물(조/순단백질) 함량에 미치는 영향)

  • Jung, Yeun-Kyu
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.24 no.3
    • /
    • pp.183-192
    • /
    • 2004
  • This pot experiment was conducted to investigate the effects of systematic variation application of Fe, Mn, Cu, and Zn on forage performance of orchardgrass and white clover. The treatments of systematic variation were 0/100, 25/75, 50/50. 75/25, and $100/0\%$ in the Fe/Cu(trial-1). Mn/Zn(trial-2), and Fe+Cu/Mn+Zn(trial-3), respectively The treatments of Fe/Mn/Cu/Zn(trial-4) were composed of $70\%$ for main element and $10\%$ for other 3 elements, respectively. 1. The contents of N-compounds in forages tended to be in inverse proportion to the yields. In the Mn/Zn trial, the 0/l00 to white clover resulted in the relatively high contents of soluble N-compounds and low ratio of pure protein/soluble N-compounds in company with a severe yield decrease. 2. In the Fe+Cu/Mn+Zn trial, the 0/100 and 100/0 resulted in the somewhat high contents of N-compounds in white clover. It was likely to be caused by the concentration effect derived from yield decrease. In addition, the 100/0 resulted in the relatively high content of soluble N-compounds and low ratio of pure protein/soluble N-compounds. The protein synthesis in white clover was likely to be negatively influenced by the 100/0. 3. In the Fe/Mn/Cu/Zn trial, white clover showed the low contents of crude and pure protein at the 1st cut. It was likely to be caused by the unbalanced mutual ratios derived from the high application levels of each single element. 4. In white clover at the 5th cut, the 0/100 of Mn/Zn and 100/0 of Fe+Cu/Mn+Zn resulted in the relatively high content of K. It was likely to be caused by the concentration effect derived from yield decrease.

Effects of Systematic Variation Application of Fe, Mn, Cu, and Zn on the Dry Matter Yields of Orcharograss and White Clover (Fe, Mn, Cu 및 Zn의 Systematic Variation 시비가 Orchardgrass 및 White Clover의 건물수량에 미치는 영향)

  • Jung, Yeun-Kyu
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.24 no.3
    • /
    • pp.193-200
    • /
    • 2004
  • This pot experiment was conducted to investigate the effects of systematic variation application of Fe, Mn, Cu, and Zn on forage performance of orchardgrass and white clover. The treatments of systematic variation were 0/100, 25/75, 50/50, 75/25, and $100/0\%$ in the Fe/Cu(trial-1), Mn/Zn(trial-2), and Fe+Cu/Mn+Zn(trial-3), respectively. The treatments of Fe/Mn/Cu/Zn(trial-4) were composed of $70\%$ in main element and $10\%$ in other 3 elements, respectively. 1. By the systematic variations of Fe, Mn, Cu, and Zn, the yields were more significantly influenced in white clover than in orchardgrass. In addition, the yields of white clover were closely correlated to the trends of root/nodule growth and flowering. In the Fe/Cu trial, the relatively high yields were obtained at the $100/0\%$ in orchardgrass and at the $75/25\%$ in white clover. The yields of white clover were more negatively influenced by the 100/0(Cu control) than by the 0/100(Fe control). The yields of orchardgrass, however, tended to be opposite to the above trends. 2. In the Mn/Zn trial, both forages showed generally high yields at the high ratios of Mn/Zn. Compared with orchardgrass, the yields of white clover were greatly decreased by the Mn-deficiency(low ratio of Mn/Zn). The effects of Zn on forage yields, however, were not recognized. 3. In the Fe+Cu/Mn+Zn trial, the yields of orchardgrass tended to be slightly different among the treatments. The yields of white clover, however, were relatively' high at the 75/25, and showed a severe decrease at the 100/0 in the 2nd half cuts. In the Fe/Mn/Cu/Zn trial, the yields of white clover tended to be relatively high at the Cu and Zn treatments. It was likely to be caused by the balanced Fe/Mn ratio.

Effects of Combined Application of Micronutrients on these Total and Relative Contents, Uptake Amounts, and Mutual Ratios in Orchardgrass and White Clover (Orchardgrass 및 White clover의 단파 및 혼파 재배에서 미량요소(Fe, Mn, Cu, Zn, Mo, B)의 조합시비가 목초의 총 함량, 상대 함량, 탈취량 및 상호비율 변화에 미치는 영향)

  • Jung, Yeun-Kyu
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.24 no.2
    • /
    • pp.93-104
    • /
    • 2004
  • This pot experiment was conducted to investigate the effects of combined micronutrient application($T_1$; control, $T_2$; Fe, $T_3$; Fe+Mn, $T_4$; Fe+Mn+Cu, $T_5$ ; Fe+Mn+Cu+Zn, $T_6$ ; Fe+Mn+Cu+Zn+Mo, T$_{7}$; Fe+Mn+Cu+Zn + Mo + B) on forage performance of pure and mixed cultures of orchardgrass and white clover. The fifth part was concerned with the changes in the total and relative contents, uptake amounts, and mutual ratios. of micronutrients in forages. The results obtained are summarized as follows: 1. The relative contents(total contents of 6 micronutrients = 100%) of Fe and Mn were considerably influenced by the antagonism between Fe and Mn, and also were influenced by the differences in Mn-absorption between orchardgrass and white clover. Compared with pure culture, orchardgrass showed high relative contents of Mn, and low relative contents of Fe and B in mixed culture. White clover, however, tended to be exactly opposed to the above trends. In relative contents, the T$_6$ 6/ resulted generally in decrease of Fe. However the $T_7$ resulted in increase of Mn and B. In addition, the $T_7$ resulted in decrease of Cu and Zn in orchardgrass, and Mo in white clover. 2. In general, there were differences in the tendency between the yield changes and the uptake amounts of micronutrients. General differences have been showed in the uptake amounts and mutual ratios of micronutrients based on the forage species, pure/mixed culture, additional fertilization, and antagonism. The uptake amounts of total micronutrients were generally increased by the treatments with increased combination. In uptake amounts, the $T_7$ resulted in the increase of Mn and B, and decrease of Mo. 3. The mutual ratios of Fe/Mn, Fe/Cu, and Mn/Cu were considerably influenced by the antagonism between Fe and Mn. At the $T_7$ , very low ratio of Fe/Mo affected by the T6 tended to be somewhat improved because of the decrease of Mo content. The poor growth of forages at the $T_6$ was improved by the $T_7$ . This fact was likely to be caused by the adequate B/Mo ratio.

Effects of Combined Micronutrient(Fe, Mn, Cu, Zn, Mo and B) Application on Forage Traits in Pure and Mixed Swards of Orchardgrass and White Clover IV. Changes in the contents of micronutrients in forage plants (Orchardgrass 및 White Clover의 단파 및 혼파 재배에서 미량요소(Fe, Mn, Cu, Zn, Mo, B)의 조합시비가 목초의 여러 특성에 미치는 영향 IV. 목초 중 미량요소(Fe, Mn, Cu, Zn, Mo, B)의 함량 변화)

  • Jung, Yeun-Kyu
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.24 no.1
    • /
    • pp.11-20
    • /
    • 2004
  • This pot experiment was conducted to investigate the effects of combined micronutrient application($T_1$;control, $T_2$; Fe, $T_3$; Fe+Mn, $T_4$: Fe+Mn+Cu, $T_5$ ; Fe+Mn+Cu+Zn, $T_6$ ; Fe+Mn+Cu+Zn+Mo, $T_7$ ;Fe+Mn+Cu+Zn+Mo+B) on forage performance of pure and mixed cultures of orchardgrass and white clover. This 4th part was related to the changes in the contents of micronutrients(Fe, Mn, Cu, Zn, Mo, and B) in forages. The results obtained are summarized as follows: 1. General differences have been showed in the contents of micronutrients based on the treatments, forage species, pure/mixed culture, cutting order, and additional fertilization, especially N. Compared to pure culture, orchardgrass showed relatively high contents of Mn and Zn, and low contents of B and Fe in mixed culture. White clover, however, tended to be exactly opposed to the above trends. The contents of Cu and Mo did not show any differences between pure and mixed cultures. 2. In relative comparison, the $T_7$ influenced negatively on the contents of Cu, Zn, and Mo in orchardgrass. The $T_7$ also influenced negatively on the contents of Mo in white clover. However, the $T_7$ influenced positively on the contents of Mn in orchardgrass, and also influenced positively on the contents of Fe, Mn, and Cu in white clover. Because of the antagonism between Fe and Mn, the Fe contents in both forages were significantly decreased by the $T_3$. Under the various conditions, the differences among Fe contents tended to be more significant in white clover than in orchardgrass. 3. At the $T_6$ and $T_7$, the Mo contents in both forages tended to be relatively high. The Mo contents, however, were somewhat decreased by the $T_7$ 7/. The Mo-toxicity, which was caused by the high Mo-contents, tended to be diminished, and was likely to be prevented by the optimum B/Mo ratio and B application($T_7$ ).