DOI QR코드

DOI QR Code

The Growth Characteristics and Germanium Uptake by Water Celery in Soil Treated with Germanium

게르마늄 처리 토양에서 미나리 생육 특성과 게르마늄 흡수

  • Lee, Seong-Tae (Gyeongsangnam-do Agricultural Research and Extension Services) ;
  • Lee, Young-Han (Gyeongsangnam-do Agricultural Research and Extension Services) ;
  • Heo, Jae-Young (Gyeongsangnam-do Agricultural Research and Extension Services) ;
  • Hong, Kwang-Pyo (Gyeongsangnam-do Agricultural Research and Extension Services) ;
  • Dahlgren, Randy A. (Department of Land, Air and Water Resources, University of California) ;
  • Heo, Jong-Soo (Division of Applied Life Science, Gyeongsang National Univ)
  • 이성태 (경상남도농업기술원 식물환경연구과) ;
  • 이영한 (경상남도농업기술원 식물환경연구과) ;
  • 허재영 (경상남도농업기술원 식물환경연구과) ;
  • 홍광표 (경상남도농업기술원 식물환경연구과) ;
  • ;
  • 허종수 (경상대학교 응용생명과학부)
  • Published : 2008.06.30

Abstract

In order to obtain the basic information for agricultural utilization of Germanium(Ge), the growth characteristics and the germanium uptake by water celery were investigated at different concentration of germanium in soil. This experiment was carried out in the Wagner pot(1 $5,000^{-1}a$). Germanium concentrations in soil for water celery cultivation were maintained at 0.26, 25.0, 62.5, and 125.0 mg $kg^{-1}$, respectively. The treatment of over Ge 25.0 mg $kg^{-1}$ in the soil led to germanium phytotoxicity such as reduction of plant height and fresh weight. The contents of germanium in water celery were increased with the increase of germanium concentration in the soil. When water celery was cultivated from soil maintained with Ge 25.0 and 62.5 mg $kg^{-1}$, its germanium contents in plant were 89.9 and 371.6 mg $kg^{-1}$, respectively. Then, the efficiency of germanium uptake of water celery in Ge 25.0 and 62.5 mg $kg^{-1}$ maintained plots was 1.7 and 2.4%, respectively. When water celery was cultivated from soil maintained with Ge 25.0, 62.5 and 125.0 mg $kg^{-1}$, its content of amino acid was found to be 89.8, 198.4, and 318.2 mg $g^{-1}$, respectively. To investigate the effect of N fertilizer application in uptake of germanium by water celery, these were treated with nontreatment, 1.0, 1.5 and 2.0 times of N application based on soil testing for cultivation of water celery. However, the amount of the N fertilizer application did not affect the contents of germanium in the water celery. When water celery was cultivated from soil maintained with two kinds of inorganic and organic germanium 50 mg $kg^{-1}$, respectively, the content of germanium were 24.2 mg $kg^{-1}$ in the Ge-132 treatment and 11.8 mg $kg^{-1}$ in the $GeO_2$ treatment.

게르마늄의 약리효능이 알려짐에 따라 게르마늄이 함유된 기능성 농산물 재배에 대한 관심이 높아지고 있는 추세이다. 본 연구는 게르마늄의 농업적 이용에 대한 기초 자료를 제공하고자 시험하였으며 미나리의 생육 및 게르마늄 흡수 특성을 분석하였다. 게르마늄 처리농도가 증가할수록 초장과 생체중이 감소하여 게르마늄 독성이 나타났다. 게르마늄 25.0 mg $kg^{-1}$ 이상에서는 생육이 저하됨에 따라 미나리의 정상적인 생육을 위해서는 그 이하 농도로 게르마늄을 처리하여야 할 것으로 생각된다. 게르마늄 농도를 25.0 및 62.5 mg $kg^{-1}$ 으로 처리하였을때 게르마늄 함량은 각각 89.9와 371.6 mg $kg^{-1}$이었으며, 흡수율은 각각 1.7 및 2.4%으로 나타났다. 토양에 게르마늄을 25.0, 62.5 및 125.0 mg $kg^{-1}$으로 처리하였을때 총 아미노산 함량은 각각 89.8, 198.4 및 318.2 mg $g^{-1}$으로 게르마늄 농도가 높을수록 아미노산 함량이 증가하였고, 특히 Asx.(Asp.+Asn.), Ser., Glx.(Glu.+Gln.), Leu. 등의 함량 증가가 뚜렷하였다. 토양에 무기게르마늄을 50 mg $kg^{-1}$으로 처리하고 질소시비량을 달리하여 미나리를 재배하였을때 토양검정에 의한 질소시비량구에서 게르마늄 함량은 11.7 mg $kg^{-1}$으로 가장 높았으나 pot당 흡수량은 질소시비량에 따른 유의성이 없어 질소비료 시용량과 게르마늄 흡수량과는 관계가 없는 것으로 나타났다. 게르마늄 종류를 달리하여 무기와 유기게르마늄을 각각 50 mg $kg^{-1}$으로 토양에 처리하였을 때 게르마늄 흡수량은 유기게르마늄인 Ge-132 처리에서 24.2 mg $kg^{-1}$으로 가장 높았으며, 무기게르마늄인Ge와 $GeO_2$ 처리에서는 각각 12.9 및 11.8 mg $kg^{-1}$이었다.

Keywords

References

  1. Obara, K., Saito, T., Sato, H., Yamakage, K., Watanabe, T., Kakizawa, M., Tsukamoto, T., Kobayashi, K., Hongo, M. and Yoshinaga, K. (1991) Germanium poisoning; clinical symptoms and renal damage caused by long-term intake of germanium. Japanese Jouranal of Medicin. 30(1), 67-72
  2. Iijima, M., Mugishima, M., Takeuchi, M., Uchiyama, S., Kobayashi, I. and Maruyama, S. (1990) A case of inorganic germanium poisoning with peripheral and cranial nephropathy. Myopathy and autonomic dysfunction 42(9), 851-856
  3. Jang, J. J., Cho, K. J., Lee, Y. S. and Bae, J. H. (1991) Modifying responses of allyl sulfide, indole -3-carbinol and germanium in a rat multi-organ carcinogenesis model. Carcinogenesis 12(4), 691-695 https://doi.org/10.1093/carcin/12.4.691
  4. Jao, S. W., Lee, W. and Ho, Y. S. (1990) Effect of germanium on 1,2-dimethylhydrazin induced intestinal cancer in rats. Dis. Colon Recutum. 33, 99-104 https://doi.org/10.1007/BF02055535
  5. Mochizuki, H. and Kada, T. (1982) Antimutagenic effect of Ge-132 on ${\gamma}-ray-induced$ mutation in Escherchia coli B/rWP2. Int. J. Radiat. Biol., 42(6), 653-659 https://doi.org/10.1080/09553008214551621
  6. Suzuki, F., Brutkiewicz, R. R. and Pollard, R. B. (1986) Cooperation of lymphokine(s) and marcophages in expression of antitumor activity of carboxyethylgermanium( Ge-132). Antitumor Res. 62(2), 177-182
  7. Aso, H., Suzuki, F., Yamaguchi, T., Hayashi, Y., Ebina, T. and Ishida, N. (1985) Induction of interferone and activation of NK cells and macrophages in mice by oral administration of Ge-12, and organic germanium compound. Microbiol. Immunol. 29(1), 65-74 https://doi.org/10.1111/j.1348-0421.1985.tb00803.x
  8. Dimartino, M. J. (1986) Antiarthritic and immunoregulatory activity of spirogermanium. J. Pharmacol. Exp. Ther. 236(1), 103-110
  9. Sasaki, K., Ishikawa, M., Monma, K. and Takayanagi, G. (1984) Effect of carboxyethylgermanium sesquioxide(Ge-132) on the acute inflammation and CCl4 induced hepatic damage in mice. Pharmacometrics 27(6), 1119-1131
  10. Kumano, N., Nakai, Y., Ishikawa, T., Koinumaru, S., Suzuki, S. and Konno, K. (1978) Effect of carboxyethylgermanium sesquioxide in the methylcholathrene induced tumorigenesis. Sci. Rep. Res. Inst. Tohoku Univ. 25, 89-95
  11. Lee, H. M. and Chung, Y. (1991) Effect of organic germanium on metallothionnein induction in liver and kidney of cadmium and mercury intoxicated rats. Kor. Yakhak Hoeji 35(2), 99-110
  12. Ho, C. C., Cherm, Y. F. and Lin, M. T. (1990) Effects of organogermanium compound 2-carboxyethylgermanium sesquioxide on cardiovascular function motor activity in rats. Pharmacology 41, 286-291 https://doi.org/10.1159/000138736
  13. Bernstein, L, R., 1985. Germanium geochemistry and mineralogy, Geochim. Comochim. Acta 49, p. 2409-2422 https://doi.org/10.1016/0016-7037(85)90241-8
  14. Kehlbeck, H. (1983) New geramanium containing yeast for medicinal and veterinary use. Deutsch Patent DE. 3345211
  15. Nobohiro, W., Osamu, I., Dakuro, K. and Koichi, Y. (1980) New approaches to using spent brewer's yeast. ASBC Journal 38, 5
  16. Wei, X. S. (1992) Effect of yeast on bioenrichment of germanium. Food Science 149, 49-54
  17. Lee, J. H., and Namkoong, S. B. (1997) Effect of germanium treatment on absorption of mineral element in rice seedling. J. Life Sci. & Nat. Res. Wonkwang Univ. 20, 27-34
  18. Lee, S. T., Lee, Y. H., Bhan, K. N., Seo, D. C. and Heo, J. S. (2005) Growth characteristics and germanium absorption in lettuce with different germanium concentrations of germanium in soil. Korean Journal of Environmental Agriculture 24(4), 404-408 https://doi.org/10.5338/KJEA.2005.24.4.404
  19. Lee, M. S., Lee, J. H., Kwon, T. O. and Namkoong, S. B. (1994) Increment of germanium contents in Angelica keiskie Koidz and Panax ginseng G.A. Meyer by In Vitro propagation. Korean J. Medicinal Crop Sci. 3(3), 251-258
  20. Park, B. W., Lee, J. H. and Kwon, T. O. (1996) Effects of $GeO_2$ and citric acid on germaniumcontent of callus and plant in Angelica koreana MAX. Korean J. Medicinal Crop Sci. 4(2), 101-108
  21. Dakley, W. M. and Volcani, B. E. (1969). Role of silicon in diatom metabolism. A silicon requirement for deoxyr- ibonucleic acid synthesis in the diatom cylindrotheca fusiformis remann and lewin, Exptl. Cell. Res., 58, 334-339 https://doi.org/10.1016/0014-4827(69)90514-X
  22. Lee, S. T., Lee, Y. H., Choi, Y. J., Lee, S. D., Lee C. H. and Heo, J. S. (2005) Growth characteristics and germanium absorption of rice plant with different germanium concentrations in soil. Korean Journal of Environmental Agriculture 24(1), 40-44 https://doi.org/10.5338/KJEA.2005.24.1.040
  23. NIAST. (2000) Methods of soil and crop plant analysis. National Institute of Agricultural Science and Technology. Suwon, Korea
  24. Kim, S. T., Lee, J. W., Choi, B. S. and Lee, B. J. (1988) Determination of germanium in ginseng radix by hydride generation inductively coupled plasma spectrometry. J. of Kor. Soc. of Analytical Science 2(2) : 203-209
  25. Sparkman, D. H., Stein, W. H. and Moore. S. (1958) Automatic recording apparatus for use in the chromatography of amino acids. Anal. Chem. 30, 1190-1197 https://doi.org/10.1021/ac60139a006
  26. Datnoff. L. E., Snyder, G. H. and Korndoref, G. H. (2001) Silicon in Agriculture
  27. Matsumoto, H., Syo, S. and Takahashi, E. (1975) Translocation and some forms of germanium in rice plants. Soil Sci. Plant Nutr. 21, 273-279 https://doi.org/10.1080/00380768.1975.10432642
  28. Kim, B. J., J. H. Baek and H. Choi. 1997. Effect of nitrogen and sulfur applicantion on yield and concents of amino acid containing sulfur of rice. Korean J. Soil Science & Fertilizer. Vol. 30(2) : 122-128
  29. Han, M. J., Kim, S. U., Seo, D. C., Cheong, Y. H., Lee D. J., Park, M. S., Rim, Y S., Sohn, B. K., Heo, J. S. and Cho, J. S. (2007) Uptake properties of germanium to vegetable plants and its effect on seed germination and on early stage growth. Korean Journal of Environmental Agriculture 26(3), 217-222 https://doi.org/10.5338/KJEA.2007.26.3.217