DOI QR코드

DOI QR Code

Effect of Long Term Waterlogging on the Growth and Nutrient Contents of 'Campbell Early' and 'Kyoho' Grapevine Cultivars

장기 침수가 포도 '캠벨얼리'와 '거봉' 품종의 생육과 양분함량에 미치는 영향

  • Published : 2008.06.30

Abstract

This work was carried out to investigate the effect of waterlogging on the growth and nutrient contents of 'Campbell Early' and 'Kyoho' grapevines under the vinyl house condition from June 14 to July 20, 2005. For the trial, seedlings of two-year-old grapevine were transplanted to 40 L pot with a sandy loam soil. Irrigation point of non-waterlogging(control) treatment was controlled at -40 kPa of soil water tension using tensiometer and waterlogging treatments were imposed for 35 days at the water levels of above 10 cm from the soil surface using tap water. The growth of aerial(shoot length, leaf number and stem diameter) and underground(root) parts of 'Campbell Early' and 'Kyoho' grapevines tended to be wholly reduced by waterlogging, while the growth of aerial parts were more severely impaired in 'Kyoho' than in 'Campbell Early' cultivar. The different responses for waterlogging between two grapevines seem to be related with the capacity for absorbing mineral nutrients, because nitrogen content of 'Campbell Early' cultivar leaves was significantly higher than that of 'Kyoho' cultivar although the contents of phosphorus and potassium in leaves of two grapevine cultivars were similarly declined. There was no significant different of fruit quality, such as contents of soluble solid, titratable acidity and weight of berry in 'Campbell Early' between waterlogging and control. In 'Kyoho' cultivar, however, berry weight and titratable acidity were decreased and soluble solid content was increased by waterlogging. It was assumed that waterlogging stress for grapevines promotes maturation and coloring processes of berries by stimulating maturation hormone such as ethylene. In conclusion, 'Campbell Early' cultivar seems to be more tolerable than 'Kyoho' cultivar when comparing the growth responses and nutrient contents between two grapevine cultivars under waterlogging.

포도나무 수체의 생육, 양분흡수 및 과실특성에 미치는 침수의 영향을 구명하기 위하여 '캠벨얼리'와 '거봉' 포도나무 2년생 유목은 40 L 포트에 정식하여 비닐하우스에서 2005년 6월14일부터 7월20일까지 35일간 비침수구(대조구)와 침수구로 구분하여 실험을 수행하였다. 실험기간 동안 대조구의 포도나무는 -40 kPa 수분장력하에서 관수점을 조절하였으며, 침수구는 포트 지면위 10 cm까지 물에 잠기게 하여 침수 처리하였다. 침수처리로 '캠벨얼리'와 '거봉' 품종 모두에서 지상부와 뿌리의 건물중은 크게 감소하였으며, 지상부 생육의 저해 정도는 '캠벨얼리'에 비해 '거봉' 품종에서 심한 경향이었다. '캠벨얼리'와 '거봉' 품종의 침수처리구에서 뿌리중 질소함량은 증가하였으며, '캠벨얼리' 잎의 질소함량은 처리구간 현저한 차이가 없는 반면 '거봉'의 잎 중 질소함량은 크게 감소하였다. '캠벨얼리'와 '거봉' 품종 모두에서 뿌리와 잎의 인과 칼륨 함량은 감소하였으며, 잎 중 인과 칼륨의 감소 정도는 '캠벨얼리'에 비해 '거봉' 품종에서 심한 경향이었다. 그 결과 '거봉' 품종의 경우 엽, 줄기 및 신초 생장은 '캠벨얼리' 품종에 비해 크게 감소하였다. 한편 침수처리 간 '캠벨얼리'의 당 산도 및 과립중은 현저한 차이가 없었다. 그러나 '거봉' 품종의 경우에는 침수에 의해 과립중이 감소하였고 산 함량은 낮은 반면 당도는 높게 나타났는데 이는 침수 스트레스에 의해 과일이 조기 착색되면서 성숙이 촉진되었기 때문으로 판단되었다. 결론적으로 '캠벨얼리' 품종에 비해 '거봉' 품종에서 지상부로의 양분전송이 현저하게 감소하여 수체생장은 보다 심하게 억제된 반면, 과실 당도는 높고 착색이 신속하게 진행되었다는 고려할 때 '캠벨얼리'에 비해 '거봉' 품종이 침수에 약한 것으로 판단된다.

Keywords

References

  1. KNSO, (2006) Damages from storms & floods (1971-2004), http://kosis.nso.go.kr/
  2. Dudal, R. (1976) Inventory of the major soils of the world with special reference to mineral stress hazards: Plant adaptation to mineral stress in problem soils, Cornell University, Ithaca, New York, p. 3-13
  3. Barrett-Lennard, E. G., Leighton, P. D., McPharlin, I. R., Setter, T. and Greenway, H. (1986) Methods to experimentally control waterlogging and measure soil oxygen in field trials, Aust. J. Soil, Res. 24, 477-483 https://doi.org/10.1071/SR9860477
  4. Barrett-Lennard, E. G., Leighton, P. D., Buwalda, F., Gibbs, J., Armstrong, W., Thomson, C. J. and Greenway, H. (1988) Effects of growing wheat in hypoxic nutrient solutions and of subsequent transfer to aerated solutions. I. Growth and carbohydrate status of shoots and roots, Aust. J. Plant Physiol. 15, 585-598 https://doi.org/10.1071/PP9880585
  5. Drew, M. C. (1983) Plant injury and adaptation to oxygen deficiency in the root environment, a review, Plant Soil 75, 179-199 https://doi.org/10.1007/BF02375564
  6. Huck, M. G. (1970) Variation in taproot elongation rate as influenced by composition of the soil air. Agron. J. 62, 815-818 https://doi.org/10.2134/agronj1970.00021962006200060042x
  7. Else, M. A., Hall, K. C., Amold, G. M. and Davies, W. J. (1995) Export of abscisic acid, 1-aminocyclopropane- 1-carboxylic acid, phosphate, and nitrate from roots to shoots of flooded tomato plants, Plant Physiol. 107, 377-384 https://doi.org/10.1104/pp.107.2.377
  8. Jackson, M. B. and Hall, K. C. (1987) Early stomatal closure in waterlogged pea plants is mediated by abscisic acid in the absence of foliar water deficits, Plant Cell Environ. 10, 121-130
  9. Kriedemann, P. E. and Sands, R. (1984) Salt resistance and adaptation to root-zone hypoxia in sunflower, Aust. J. Plant Physiol. 11, 287- 301 https://doi.org/10.1071/PP9840287
  10. Moezel van der, P. G., Watson, L. E. and Bell, D. T. (1989) Gas exchange responses of two Eucalyptus species to salinity and waterlogging, Tree Physiol. 5, 251-257 https://doi.org/10.1093/treephys/5.2.251
  11. Rubio, G. and Lavado, R. (1997) Mechanism for the increase in phosphorus uptake of waterlogged plants: soil phosphorus availability, root morphology and uptake kinetics, Oecologia 112: 150-155 https://doi.org/10.1007/s004420050294
  12. Close, D. C. and Davidson, N. J. (2003) Long-term waterlogging: nutrient, gas exchange, photochemical and pigment characteristics of Eucalyptus nitens saplings, Russian Journal of Plant Physiology 50, 843-847 https://doi.org/10.1023/B:RUPP.0000003284.25827.95
  13. Gutierrez Boem, F. H., Lavado, R. S. and Porcelli, C. A. (1996) Note on the effects of winter and spring waterlogging on growth, chemical composition and yield of rapeseed. Field Crops Research 47, 175-179 https://doi.org/10.1016/0378-4290(96)00025-1
  14. Smethurst C. F., Garnett, T. and Shabala, S. (2005) Nutritional and chlorophyll fluorescence response of lucerne (Medicago sativa) to waterlogging and subsequent recovery, Plant and Soil 270, 31-45 https://doi.org/10.1007/s11104-004-1082-x
  15. Rural Development Administration (RDA). (1988) Soil Chemical Analysis, RDA
  16. De Witt, M. C. J. (1978) Morphology and function of roots and shoot growth of crop plants under oxygen deficiency, In Hook, D. D. and R. M. M. Crawford, (ed.). Plant Life in Anaerobic Environments, Ann Arbor Sci. Press, Ann Arbor, MI. p. 333-350
  17. Kozlowski, T. T. (1982) Water supply and tree growth, II. Flooding, For. 43, 145-161
  18. Anderson, P. H. and Pezeshki. S. R. (1999) The effect of intermittent flooding on seedlings of three forest species, Photosynthetica 37, 543-552 https://doi.org/10.1023/A:1007163206642
  19. Domingo, R., Perez-Pastor, A. and Ruiz-Sanchez, M. C. (2002) Physiological responses of apricot plants grafted on two different rootstocks to flooding conditions, J. Plant Physiol. 159, 725-732 https://doi.org/10.1078/0176-1617-0670
  20. Kozlowski, T. T. (1984) Responses of woody plants to flooding. In T.T. Kozlowski (ed.). Flooding and Plant Growth, Academic Press, Orlando, FL, USA, p. 129-163
  21. Wang, T. S. C., S. Cheng, Y. and Tung, H. (1967) Dynamics of soil organic acids, Soil Sci. 104, 138-144 https://doi.org/10.1097/00010694-196708000-00011
  22. Hook, D. D., Brown, C. L. and Kormanik, P. P. (1971) Inductive flood tolerance in swamp tupelo (Nyssa sylvatica var. biflora (Walt.) Sarg.), J. Exp. Bot. 22, 78-89 https://doi.org/10.1093/jxb/22.1.78
  23. Drew, M. C., Sisworo, E. J. and Saker, L. R. (1979) Alleviation of waterlogging damage to young barley plants by application of nitrate and a synthetic cytokinin, and comparison between the effects of waterlogging, nitrogen deficiency and root excision, New phytol. 82: 315-329 https://doi.org/10.1111/j.1469-8137.1979.tb02657.x
  24. Zhou, W., Zhao, D. and Lin, X. (1997) Effects of waterlogging on nitrogen accumulation and alleviation of waterlogging damage by application of nitrogen fertilizer and Mixtalol in winter rape (Brassica napus L.), J. Plant Growth Regul. 16: 47-53 https://doi.org/10.1007/PL00006974
  25. Jones, R. (1974) Comparative studies of plant growth and distribution in relation to waterlogging. VIII. The uptake of phosphorus by dune and dune slack plants, J. Ecol. 62: 109-116
  26. Waldren, S., Etherington, J. R. and Davies, M. S. (1987) Comparative studies of plant growth and distribution in relation to waterlogging. X IV. Iron, manganese, calcium and phosphorus concentration in leaves and roots of Geum rivale L. and G. urbanum L. grown in waterlogged soil, New Phytol. 106:689-696 https://doi.org/10.1111/j.1469-8137.1987.tb00169.x
  27. Bradfrod, K. J. and Yang, S. F. (1981) Physiological responses of plants to waterlogging. HortScience 16, 25-30
  28. Kozlowski, T. T. (1984) Responses of woody plants to flooding. In T.T. Kozlowski (ed.). Flooding and Plant Growth, Academic Press, Orlando, FL, USA, p. 129-163
  29. Reid. D. M. and Bradford, K. J. (1984) Effect of flooding on hormone relations, In T. T. Kozlowski (ed.). Flooding and plant growth, Academic Press, Orlando, FL, USA, p 195-219
  30. Bradford, K. J. and Yang, S. F. (1980) Xylem transport of 1-aminocyclopropane-l-carboxylic acid, and ethylene precursor, in waterlogged tomato plants, Plant Physiol. 65, 506-509 https://doi.org/10.1104/pp.65.3.506
  31. Abeles, F. B. 1973. In Ethylene in Plant Physiology. Academic Press