DOI QR코드

DOI QR Code

Evaluation of Yield and Quality from Red Pepper for Application Rates of Pig Slurry Composting Biofiltration

고추에서 SCB액비 시용량 설정을 위한 수량 및 품질 평가

  • Lim, Tae-Jun (Horticultural Soil Management Team, National Horticultural Research Institute, Rural Development Administration) ;
  • Hong, Soon-Dal (Department of Agricultural Chemistry, Chung-buk National University) ;
  • Kim, Seung-Heui (Horticultural Soil Management Team, National Horticultural Research Institute, Rural Development Administration) ;
  • Park, Jin-Myeon (Horticultural Soil Management Team, National Horticultural Research Institute, Rural Development Administration)
  • 임태준 (원예연구소 원예토양관리연구팀) ;
  • 홍순달 (충북대학교 농과대학 농화학과) ;
  • 김승희 (원예연구소 원예토양관리연구팀) ;
  • 박진면 (원예연구소 원예토양관리연구팀)
  • Published : 2008.06.30

Abstract

The application in agricultural fields of pig slurry composting biofiltraton amending smell and nutrient unevenness, it is important for the appropriate nitrogen nutrient management to promote the availability of the crops and to minimize the risk of adversely environmental effects. The objective of this study was to determine the application rates of the preplant pig slurry composting biofiltration for red pepper(Capsicum annuum L.) by considering the yield response and the fruit quality such as sugar, capsaicinoid content. Red peppers were grown on plastic film ground under five different pig slurry(PS) application rates and mineral fertilizer(MF 100%) as a control. The effects of a single application of five different doses of PS: PS 0%(no kg N $ha^{-1}$), PS 50%(51.5 kg N $ha^{-1}$), PS 75%(77.3 kg N $ha^{-1}$), PS 100%(103 kg N $ha^{-1}$) and PS 125%(129 kg N $ha^{-1}$) were compared with the recommended mineral treatment(103 kg N $ha^{-1}$) in the pre-planting. The sidedressing N application(87 kg N $ha^{-1}$) was applied to the mineral fertilizer in all treatments. Red peppers were harvested at the mature red stage through five times from 72 days after transplanting(DAT) to 133 DAT. The results indicated that the yield of red pepper was increased with the increase of the N application rates from PS 0% to PS 100%. The highest yield was obtained in PS 100% by 20,843 kg $ha^{-1}$, although there were no significant differences in yield among PS 100, PS 125% and MF 100%. In addition, The contents of soluble sugar and capsaicinoids were not significantly different in all treatments. Accordingly, fertilization recommendations of red pepper to substitute PS for the mineral fertilizer were considered to PS 100%.

악취와 양분의 불균일을 개선한 SCB 액비를 농경지에 투입하기 위해서는 작물에의 이용 및 환경에의 영향을 최소화하는 적정한 질소 양분관리가 중요하다. 본 연구의 목적은 노지 고추 재배에서 수량과 고추 품질 평가 항목으로 가용성 당 및 capsaicinoids 등을 고려하여 정식 전 액비의 적정 시용량을 평가하고자 하였다. 액비 처리에 따른 건물중은 시용량 증대에 따라서 증가하는 경향을 나타내었으며, 부위별로는 열매가 건물중의 주요 부분을 차지하였으며 열매를 제외한 모든 처리구에서 각각의 부위별로 처리간의 큰 차이가 없음을 보였다. 정식 후 72에서 133일까지 총 5회에 걸쳐서 수확한 누적 수량에서 수확 초기인 1차 및 2차 수확에서는 처리간의 수량의 차이를 보이지 않았지만, 3차 수확이래로 액비 처리간에 차이를 보였다. 홍고추의 수량은 액비의 시용량 증가에 따라서 정량적으로 증가하였으며, 액비 100% 시용구에서 가장 많은 수량을 나타내었으나, 화학비료구 및 액비 125%구와 처리간의 차이는 없었다. 고추 품질 평가로서 가용성 당과 캡사이시노이드와의 비교에서 액비 시용 수준과 화학비료구간의 차이는 없었다. 위의 결과에서 고추에서 밑거름 화학비료 대체를 위한 액비의 시용은 질소 시비 추천량에 대해서 SCB 액비 100% 시용이 추천된다.

Keywords

References

  1. 가축분뇨 자원화기술 연구성과. (2007) RDA. p, 9-21
  2. Dauden, A. and Qullez, D. (2004) Pig slurry versus mineral fertilization on corn yield and nitrate leaching in a Mediterranean irrigated environment. Europ. J. Agronomy. 21, 7-19 https://doi.org/10.1016/S1161-0301(03)00056-X
  3. Hountin, J. A., Couillard, D. and Karam A. (1997) Soil carbon, nitrogen and phosphorus contents in maize plots after 14years of pig slurry applications. J. Agric. Sci. 129, 187-191 https://doi.org/10.1017/S0021859697004504
  4. Jensen, L. S., Pedersen, I. S., Hansen, T. B. and Nielsen, N. E. (2000) Turnover and fate of $^{15}N-labelled$ cattle slurry ammonium-N applied in the autumn to winter wheat. Eur. J. Agron. 12, 23-35 https://doi.org/10.1016/S1161-0301(99)00040-4
  5. Nielsen, N. E. and Jensen, H. E. (1990) Nitrate leaching from loamy soils as affected by crop rotation and nitrogen fertilizer application. Fert. Res. 26, 197-207 https://doi.org/10.1007/BF01048757
  6. www.naqs.go.kr/statisticslifo/guide.jsp
  7. Om, Y. H. and Pyo, H. K. (1981) Studies on quantitative characters in red pepper (Capsicum annuum L.). J. Kor. Soc. Hort. Sci. 22, 231-264
  8. Iwai, K., Suzuki, T. and Fujiwake. H. (1979) Formation and accumulation of pungent principle of hot pepper fruits, capsicin and its analogues in Capsicum annuum var. annuun cv. Karayatsubusa at different growth stage after flowering. Agric. Biol. Chem. 43, 2493-2496 https://doi.org/10.1271/bbb1961.43.2493
  9. Lee, H. D. and Lee. C. H. (1992) Studies on the quality evaluation of korean red pepper by color measurement. Korean J. Dietary Culture 7, 105-112
  10. NIAST. (2000) Method of soil and plant analysis, National Institute of Agricultural Science and Technology. RDA, Suwon, Korea
  11. Jung, J. W., Cho, M. C. and Cho, Y. S. (2006) Fruit quality of once-over harvest pepper (Capsicum annuum) Cultivar 'Saengryeg No 211' and 'Saengryeg No. 213'. Kor. J. Hort. Sci. Technol. 24(2), 205-209
  12. Lope-Hernandez, J., Oruna-Concha, M. J., Simal- Lozano, J., Vazquez-Blanco, M. E. and Gonzalez- Castro, M. J. (1996) Chemical composition of padron peppers (Capsicum annuum L.) grown in Galicia. Food Chem. 57, 557-559 https://doi.org/10.1016/S0308-8146(96)00191-4
  13. Simonne, E. H., Eakes, D. J. and Harris, C. H. (1998) Effects of irrigation and nitrogen rates on foliar mineral composition of bell pepper. J. Plant Nutr. 21(12), 2545-2555 https://doi.org/10.1080/01904169809365586
  14. Olsen, J. K., Lyons, D. J. and Kelly, M. M. (1993) Nitrogen uptake and utilisation by bell pepper in subtropical australia. J. Plant Nutr. 16(10), 2055-2071 https://doi.org/10.1080/01904169309364674
  15. Mills, H. A. and Jones, J. B. (1996) Plant Analysis Handbook II. Micromacro Publishing, Inc., Athens, GA
  16. Kang, B. G., Kim, H. J., Lee, G. J. and Park, S. G. (2004) Determination of the optimum application rate of pig slurry for red pepper cultivation. Korean J. Soil Sci. Fert. 37(6), 388-395
  17. Dauden, A., Qullez, D. and Vera, M. V. (2004) Pig slurry application and irrigation effects on nitrate leaching in Mediterranean soil lysimeters. J. Environ. Qual. 33, 2290-2295 https://doi.org/10.2134/jeq2004.2290
  18. Thomsen, I. K. (2005) Nitrate leaching under spring barley is influenced by the persence of a ryegrass catch crop: Rsults from a lysimeter experiment. Agriculture, Ecosystems and Environment 111, 21-29 https://doi.org/10.1016/j.agee.2005.05.001
  19. Riley, D. and A. Barber. (1971) Effect of ammonium fertilization on phosphorus uptake as related to root-induced pH changes at the root-soil interface. Soil Sci. Soc. Am. Proc. 25, 301-306
  20. Walid Q., Munir J. M., Husam N. and Remon Q. (1999) Response of bell pepper grown inside plastic houses to nitrogen fertilgation. Commun. Soil. Sci. Plant Anal. 30(17&18), 2499-2509 https://doi.org/10.1080/00103629909370390
  21. Yun, H. K., Kim, K. Y., Kim, Y. C., Lee, J. W. and Kim, I. S. (2002) Change of some constituents along with the fruit maturity in Capsicum species. J. Agric. Sci. 43(1), 39-42

Cited by

  1. Growth Effect and Nutrient Uptake by Application Interval of Developed Slurry Composting and Biofiltration (DSCB) Liquid Fertilizer on Kentucky Bluegrass vol.3, pp.4, 2014, https://doi.org/10.5660/WTS.2014.3.4.362
  2. The Effect of Application Levels of Slurry Composting and Bio-filtration Liquid Fertilizer on Soil Chemical Properties and Growth of Radish and Corn vol.44, pp.6, 2011, https://doi.org/10.7745/KJSSF.2011.44.6.1306
  3. Effects of Devarda's Alloy Addition on Determination of Total Nitrogen and Inorganic Nitrogen in Liquid Livestock Manure vol.45, pp.2, 2012, https://doi.org/10.7745/KJSSF.2012.45.2.223
  4. Effect of Pig Slurry Fertigation on Soil Chemical Properties and Growth and Development of Cucumber (Cucumis sativus L.) vol.44, pp.2, 2011, https://doi.org/10.7745/KJSSF.2011.44.2.194
  5. Effect of Pig Slurry Application on the Mineral Content of Leaf, Fruit Quality and Soil Chemical Properties in Pear Orchard vol.45, pp.2, 2012, https://doi.org/10.7745/KJSSF.2012.45.2.209
  6. Optimum Application Amount, Timing, and Frequency of Slurry Composted and Biofiltered Liquid Fertilizer for Zoysia japonica 'Millock' vol.30, pp.6, 2012, https://doi.org/10.7235/hort.2012.12099
  7. Effect of Slurry Composting Biofiltration (SCB) Liquid Manure on Shoot Growth and Fruit Qualities of Peach (Prunus persica L.) and Soil Chemical Properties in Orchard vol.46, pp.6, 2013, https://doi.org/10.7745/KJSSF.2013.46.6.530
  8. Changes of Soil Properties in Corn (Zea mays L.) Fields Treated with Compost and Liquid Fertilizer vol.44, pp.3, 2011, https://doi.org/10.7745/KJSSF.2011.44.3.473
  9. Growth and Biomass Production of Fast Growing Tree Species Treated with Slurry Composting and Biofiltration Liquid Fertilizer vol.44, pp.2, 2011, https://doi.org/10.7745/KJSSF.2011.44.2.206
  10. Organosolv Pretreatment of Slurry Composting and Biofiltration of Liquid Fertilizer-Treated Yellow Poplar for Sugar Production vol.43, pp.5, 2015, https://doi.org/10.5658/WOOD.2015.43.5.578
  11. Effect of Slurry Composting Bio-filtration (SCB) by Subsurface Drip Fertigation on Cucumber (Cucumis sativus L.) Yield and Soil Nitrogen Distribution in Greenhouse vol.46, pp.4, 2013, https://doi.org/10.7745/KJSSF.2013.46.4.253
  12. Effects of Fertigation with Pig Slurry on Growth and Yield of Red pepper vol.29, pp.3, 2010, https://doi.org/10.5338/KJEA.2010.29.3.227
  13. Biomass characteristics and ethanol production of yellow poplar (Liriodendron tulipifera) treated with slurry composting and biofiltration liquid as fertilizer vol.42, 2012, https://doi.org/10.1016/j.biombioe.2012.03.018
  14. Effect of Slurry Composting and Bio-filtration (SCB) by Fertigation on Soil Chemical Properties and Growth of Red Pepper (Capsicum annuum L.) vol.48, pp.5, 2015, https://doi.org/10.7745/KJSSF.2015.48.5.404
  15. Effect of Treatment Amounts of Slurry Composting and Biofiltration Liquid Fertilizer on Growth Characteristics and Bioethanol Production of Yellow Poplar vol.39, pp.6, 2011, https://doi.org/10.5658/WOOD.2011.39.6.459
  16. Influence of the Composted Liquid Manure on the Turf Growth of Zoysiagrass (Zoysiagrass japonica) and Soil Properties vol.3, pp.4, 2014, https://doi.org/10.5660/WTS.2014.3.4.347
  17. The Effect of Composted Liquid Manure on the Growth of Zoysiagrass vol.22, pp.4, 2014, https://doi.org/10.17137/Korrae.2014.22.4.045
  18. Inhibition of in Vitro Growth of Three Soil-borne Turfgrass Diseases by Antagonistic Bacteria from Composted Liquid Manure vol.32, pp.6, 2014, https://doi.org/10.7235/hort.2014.14085
  19. Growth Response of Eggplant (Solanum melongena L.) Using Balanced Manure Nutrients Supply by Fertigation Culture vol.26, pp.2, 2018, https://doi.org/10.11625/KJOA.2018.26.2.269