DOI QR코드

DOI QR Code

Effects of Rhodobacter sp. SA16 on Lettuce(Lactuca sativa L.) in Plastic Film House

시설 상추에 대한 Rhodobacter sp. SA16 처리 효과

  • Lee, Young-Han (Gyeongsangnam-do Agricultural Research and Extension Services) ;
  • Jeong, Han-Taek (Shinangrowth Co.) ;
  • Yun, Han-Dae (Division of Applied Life Science, Gyeongsang National Univ. and Research Institute of Agriculture and Life Science)
  • 이영한 (경상남도농업기술원) ;
  • 정한택 ((주)신안그로) ;
  • 윤한대 (경상대학교 응용생명과학부 및 농업생명과학연구원)
  • Published : 2008.06.30

Abstract

This experiment was conducted to determine the development of mixed organic fertilizer using photosynthetic bacteria and mass production of mixed microbial compound for the environment-friendly agriculture. Photosynthetic bacteria, Rhodobacter sp. SA16 was isolated from soil collected by plastic film house. The SA16 strain was identified based on 16S rDNA sequence analysis and it is closely related to Rhodobacter sp.(100% similarity). The mixed organic fertilizer using SA16 was made of $N-P_2O_5-K_2O=60-10-20\;g\;kg^{-1}$ with combined soybean cake, sesame cake, powdered blood, fish meal, powdered bones and red-yellow soil. The mixed organic fertilizer 0.45, 0.90 and 1.35 Mg $ha^{-1}$ application in Ihyeon series was treated based on soil testing for lettuce cultivation in plastic film house. These results showed that the yield was increased the 18 and 19%over control by the mixed organic fertilizer application 0.45 and 0.90 Mg $ha^{-1}$, respectively. In the physical properties of the soil, the porosity of mixed organic fertilizer 1.35 Mg $ha^{-1}$ treatment was highest at 58.8%. Our results clearly revealed that the organic fertilizer using Rhodobacter sp. SA16 and mass production of mixed strains could be a useful technology in pursuing environment-friendly agriculture.

유기물이 많고 작물생육이 양호한 시설 및 논토양에서 우점하는 광합성 세균을 분리하여 대두박 등의 유기물질과 혼합하여 혼합유기질 비료를 개발하였고 상추에 대한 시용효과를 검토하였다. 광합성 세균은 시설 및 논토양에서 형태적으로 가장 분포도가 많은 균주를 선정하고 이를 SA16 균주로 명명하였다. 선발된 균주는 폭 $0.5{\sim}1.2{\mu}m$, 길이 $2{\sim}2.5{\mu}m$의 간균 혹은 구균에 가까운 형태로 관찰되었으며 16S rDNA 분석으로 1.3 kb DNA 단편을 얻어 염기서열을 분석한 결과 Rhodobacter sp.와 가장 유사한 것으로 나타났다. 질소기준으로 토양 검정시비 처리구와 동량인 혼합유기질비료 0.90 Mg $ha^{-1}$ 처리구는 대조구 보다 주당 엽수는 2장 정도 많았고 뿌리길이도 2 cm 정도 길었다. 혼합유기질 비료 시용량별 수확량은 $0.90{\geqq}0.45>1.35Mg\;ha^{-1}$ 순으로 많았으며 5% 수준에서 처리간에 유의성이 인정되었고 최대 수확량을 얻을 수 있는 적정 시용량을 2차 회귀곡선($y=-0.0008x^2+0.1174x+21.332,\;R^2=0.9951$)으로 구한 결과 0.72 Mg $ha^{-1}$로 나타났다. 수확 후 토양 공극율은 혼합유기질 비료1.35 Mg $ha^{-1}$ 처리구가 58.8%로 가장 좋은 것으로 나타났으며 혼합유기질 비료 처리에 따른 토양중 호기성세균의 분포는 혼합유기질 비료 0.90 및 1.35 Mg $ha^{-1}$ 처리구가 12.4, 및 $12.8{\times}10^6CFU\;g^{-1}$로 가장 높았다.

Keywords

References

  1. Sohn, S. M. and Han, D. H. (2000) Assessment of environmentally sound function on the increasing of soil fertility by Korean organic farming. J. Korean Soc. Soil Sci. Fert. 33(3), 193-204
  2. Lee, Y. J., Choi, D. H., Kim, S. H., Lee, S. M., Lee, Y. H., Lee, B. M. and Kim, T. W. (2004) Longterm changes in soil chemical properties in organic arable farming systems in Korea. J. Korean Soc. Soil Sci. Fert. 37(4), 228-234
  3. Kim, C. G. (2003) Evaluation and project on support policies for improvement in environmentally friendly agriculture. pp. 5-19. Proceedings of symposium for evaluation and development on policies of environmentally friendly agriculture. Agriculture, Fisheries & Livestock News, Seoul, Korea
  4. Lee, M. S., Yoo, J. H. and Lee, J. Y. (1996) The use of soybean meal, corn gluten meal, meat meal, meat and bone meal, or blood meal as a dietary protein source replacing fish meal in Korean rockfish (Sebastes Schlegeli). Korean J. Nutr. Feed 20, 21-30
  5. Yoon, S. H. (2000) Understanding and usage of organic materials for agriculture. In T. G. Lee (ed.). Theory and practice of environmental agriculture. Heuksalim, Goesan, Korea
  6. Simamoto, K. (2000) Advanced microbiological farming for promoting soil. Gardening Part. pp. 110-131, Translated by Korean Society of Compost Farming (3rd ed.). Seongju, Korea
  7. Whitman, A. (2001) Organic gardening for dummies. IDG Books Worldwide, Inc., Foster City, USA
  8. Allen, J. F. (1983) Protein phosphorylation carburettor of photosynthesis? Trends in Biochem. Sci. 8, 369-373 https://doi.org/10.1016/0968-0004(83)90364-X
  9. Anderson, J. M. (1982) Distribution of the cytochromes of spinach chloroplasts between the appressed membranes of grana stacks and stroma-exposed thylakoid regions. FEBS letters 138, 62-66 https://doi.org/10.1016/0014-5793(82)80395-5
  10. Barber, J. (1983) Photosynthetic electron transport in relation to thylakoid membrane composition and organization. Plant, Cell and Environ. (Commissioned Review) 6, 311-322
  11. Goedheer, J. C. (1979) Carotenoids in the photosynthetic apparatus. Berichte der Deutschen Botan. Gesamte 92, 427-436
  12. Stemler, A. and Radmer, R. (1975) Source of photosynthetic oxygen in bicarbonate-stimulated Hill reaction. Science 190, 457-458 https://doi.org/10.1126/science.190.4213.457
  13. Melis, A. and Brown, J. S. (1980). Stoichiometry of system I and system II reaction centers and of plastoquinone in different photosynthetic membranes. Proceedings of the National Academy of Sciences USA 77, 4712-4716
  14. Strottman, H. and Schumann, J. (1983) Structure, function and regulation of chloroplast ATPase. (Minireview) Physiologia Plantarum 57, 375-382 https://doi.org/10.1111/j.1399-3054.1983.tb02304.x
  15. Quispel, A. (1974) The biology of nitrogen fixation. 3. North-Holland Research Monograph. 3, 3
  16. Hardy, R. W. F., Burns, R. C. and Holsten, R. D. (1973) Application of the acetylene-ethylene assay for measurement of nitrogen fixation. Soil Biol. Biochem. 5, 47-81 https://doi.org/10.1016/0038-0717(73)90093-X
  17. Dommergues, Y., Balandreau, J., Rinaudo, G. and Weinhard, P. (1973) Non-symbiotic nitrogen fixation in the rhizosphere of rice, maize and different tropical grasses. Soil Biol. Biochem. 5, 83-89 https://doi.org/10.1016/0038-0717(73)90094-1
  18. Kobayashi, M. and Haque, M. Z. (1971) Contribution to nitrogen fixation and soil fertilities by photosynthetic bacteria. P1. Soil special vol. pp. 443-456
  19. Lee, S. K. and Lee, M. G. (1987) Studies on physiological nitrogen fixation II. effects of soil physical properties-soil texture, soil type, drainage and agricultural locality-on the changes of photo synthetic and aerobic heterotrophic nitrogen fixing activity. J. Korean Soc. Soil Sci. Fert. 20(2), 185-192
  20. Lee, S. K., Lee, M. G., Lim, S. U. Studies on $C_2H_2-C_2H_4$ reducing activities ($N_2-fixing$) in paddy soil. J. Korean Soc. Soil Sci. Fert. 10(1), 23-28
  21. Rao, V. R., Kaliniskaya, T. A. and Miller, U. M. (1973) The activity of non-symbiotic nitrogen fixation in soil of rice fields studies with N15. Microbiol. 42, 729-734
  22. Rinaudo, G., Balandreau, J. and Dommergues, Y. (1971) Algal and bacterial non-symbiotic nitrogen fixation in paddy soil. P1. Soil special vol. pp. 417-442
  23. Yoshida, T. and Ancajas, R. R. (1973) The fixation of atmospheric nitrogen in the rice rhizosphere. Soil Biol. Bioch. 5, 153-155 https://doi.org/10.1016/0038-0717(73)90102-8
  24. Khan, R. A. and Saxena, S. K. (1997) Integrated management of root knot nematode Meloidogyne javanica infecting tomato using organic materials and Paecilomyces lilacininus. Bioresource Technol. 61, 247-250 https://doi.org/10.1016/S0960-8524(97)00024-2
  25. Saifullah, A. G. and Shah, S. F. A. (1990) Control of root-knot nematodes in tomato through organic amendments and NPK. Sarhad J. Agric. 6, 95-97
  26. Saifullah, A. G. and Zulfiqar, M. (1990) Promising control of root-knot nematodes (Meloidogyne spp.) of tomato through organic amendments. Sarhad J. Agric. 6, 417-420
  27. Panneerslvam, A. and Saravanamuthu, R. (1996) Studies on the saprophytic survival of Fusarium moniliforme J. Sheld in soil under treatment of oil cakes. Indian J. Agric. Res. 30, 12-16
  28. Ciavatta, C., Govi, M., Sitti L. and Gessa, C. (1997) Influenceof blood meal organic fertilizer on soil organic matter : a laboratory study. J. Plant Nutr. 20, 1573-1591 https://doi.org/10.1080/01904169709365358
  29. Han, I. K. and Chae, B. J. (1987) Studies on the nutritive values of locally produced fish meals. II. A study on the amino acid composition of locally produced fish meals. Korean J. Anim. Sci. 29, 93-99
  30. Topp, G. C., Reynolds, W. D. Cook, F. J. Kirby, J. M. and Carter, M. R. (1997) Physical attributes of soil quality. pp. 21-58. In E. G. Gregorich and M. R. Carter (ed.) Soil quality dor crop production and ecosystem health. Developments in Soil Science, Vol. 25. Elsevier, New York, NY, USA
  31. Reynolds, W. D., Bowman, B. T. Drury, C. F. Tan, C. S. and Lu., X. (2002) Indicators of good soil physical quality : density and storage parameters. Geoderma 110, 131-146 https://doi.org/10.1016/S0016-7061(02)00228-8
  32. Boix-Fayos, C., Calvo-Cases, A., Imeson, A. C. and Soriano-Soto, M. D. (2001) Influence of soil properties on the aggregation of some Mediteranean soils and the use of aggregate size and stability as land degradation indicators. Catena 44, 47-67 https://doi.org/10.1016/S0341-8162(00)00176-4
  33. Denef, K., Six, J., Paustian, K. and Merckx, R. (2001) Importance of macroaggregate dynamics in controlling soil carbon stabilization : short-term effects of physical disturbance induced by dry-wet cycles. Soil Biol. Biochem. 33, 2145-2153 https://doi.org/10.1016/S0038-0717(01)00153-5
  34. Hur, B. K., Kim, L. Y., Jo, I. S., Park, Y. S. Um, K. T. and Kim, M. S. (1986) Effects of organic matter resources on the soil improvement and crop growth. J. Korean Soc. Soil Sci. Fert. 17, 155-160
  35. Jo, I. S. (1990) Effect of organic fertilizer on soil physical properties and plant growth. Technical Bulletin No. 119. p. 1-16. Food & Fertilizer Technology Center, Suwon, Korea
  36. Park, C. S. (1978) Effects of organic materials application on the growth and yield of crops in Korea. J. Korean Soc. Soil Sci. Fert. 11, 175-194
  37. Aggelides, S. M. and Londra, P. A. (2000) Effects of compost produced from town wastes and sewage sludge on the physical properties of a loamy and a clay soil. Bioresour. Technol. 71, 253-259 https://doi.org/10.1016/S0960-8524(99)00074-7
  38. Hortenstine, C. G. and Ruthwell, D. F. (1973) Pelletized muncipal refuse compost as a soil amended and nutrient sorghum. J. Environ. Qual. 2(3), 343-344 https://doi.org/10.2134/jeq1973.00472425000200030007x
  39. Pagliai, M., Guidi, G., La Marca, M., Giachetti, M. and Luccamante, G. (1981) Effects of sewage sludge and composts on soil porosity and aggregation. J. Environ. Qual. 10(4), 556-561 https://doi.org/10.2134/jeq1981.00472425001000040028x
  40. Chu, L. M. and Wong, M. H. (1987) Heavy metal contents of vegetable crops treated with refuse compost and sewage sludge. Plant Soil. 103(2), 191-197 https://doi.org/10.1007/BF02370388
  41. Imhoff, J. F. and Truper, H. G. (1989) Purple nonsulfur bacteria. pp. 1658-1662. In J. T. Staley et al. (ed.) Bergey's manual of systematic bacteriology. Vol. 3. Williams and Wilkins, Baltimore
  42. Holt, J. G. (1984). Bergey's manual of systematic bacteriology. Williams & Wilkins press. 3, 469-476
  43. RDA (1995) Standard of agricultural research
  44. NIAST (2000) Methods of soil and plant analysis, National Institute of Agricultural Science and Technology, RDA, Suwon, Korea
  45. Soil Science Society of America, 1996. Methods of soil analysis. SSSA, Wisconsin. USA
  46. Little, T. M. and Hills, J. J. (1978) Agricultural Experimentation. Design and analysis. John Wiley. Chichester